Zobrazeno 1 - 10
of 165
pro vyhledávání: '"David Brie"'
Publikováno v:
IEEE Access, Vol 7, Pp 13217-13229 (2019)
Piecewise signals appear in many application fields. Here, we propose a framework for segmenting such signals based on the modeling of each piece using a parametric probability distribution. The proposed framework first models the segmentation as an
Externí odkaz:
https://doaj.org/article/bcd7cd808a0c4d1291cd9cc06f34d262
Publikováno v:
PLoS ONE, Vol 10, Iss 3, p e0122848 (2015)
The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of t
Externí odkaz:
https://doaj.org/article/ba304a638a46498e82eecd85a2941190
Publikováno v:
PLoS ONE, Vol 6, Iss 4, p e18887 (2011)
Atomic force microscopy (AFM) has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specif
Externí odkaz:
https://doaj.org/article/7fe4cf4f73a3440fae80b1cb664c3b0d
Autor:
David Brie, Ricardo Augusto Borsoi, Jose C. M. Bermudez, Cedric Richard, Clémence Prévost, Konstantin Usevich
Publikováno v:
IEEE Journal of Selected Topics in Signal Processing
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2021, 15 (3), pp.702-717. ⟨10.1109/JSTSP.2021.3054338⟩
IEEE Journal of Selected Topics in Signal Processing, IEEE, 2021, 15 (3), pp.702-717. ⟨10.1109/JSTSP.2021.3054338⟩
International audience; Coupled tensor approximation has recently emerged as a promising approach for the fusion of hyperspectral and multispectral images, reconciling state of the art performance with strong theoretical guarantees. However, tensor-b
Autor:
Dion Candelaria, Julie Redfern, Adrienne O’Neil, David Brieger, Robyn A Clark, Tom Briffa, Adrian Bauman, Karice Hyun, Michelle Cunich, Gemma A Figtree, Susie Cartledge, Robyn Gallagher
Publikováno v:
BMC Cardiovascular Disorders, Vol 24, Iss 1, Pp 1-9 (2024)
Abstract Background Coronary heart disease (CHD) is the leading cause of deaths and disability worldwide. Cardiac rehabilitation (CR) effectively reduces the risk of future cardiac events and is strongly recommended in international clinical guidelin
Externí odkaz:
https://doaj.org/article/d93172dbec0a4767a192731459ea8ed1
Autor:
Philippe Flores, Guillaume Harle, Anne-Beatrice Notarantonio, Konstantin Usevich, Maud D'Aveni, Stephanie Grandemange, Marie-Therese Rubio, David Brie
In this paper, we propose a new method for automated flow cytometry data analysis. By modeling a multidimensional probability distribution as a mixture of simpler distributions, we can reformulate the problem as a coupled tensor approximation of 3D m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::423a4f2eb3d6b551583ef540005ab9ef
https://hal.archives-ouvertes.fr/hal-03718437
https://hal.archives-ouvertes.fr/hal-03718437
Publikováno v:
2021 55th Asilomar Conference on Signals, Systems, and Computers.
Publikováno v:
Signal Processing. 198:108573
Publikováno v:
19th IFAC Symposium on System Identification, SYSID 2021
19th IFAC Symposium on System Identification, SYSID 2021, Jul 2021, Padova (virtual), Italy
19th IFAC Symposium on System Identification, SYSID 2021, Jul 2021, Padova (virtual), Italy
International audience; Decoupling of multivariate functions is an important problem in block-structured system identification. In the literature, different tensor-based solutions have been proposed to solve this problem using a canonical polyadic de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27729c335f8d8de9690b3f849cecf72d
https://hal.archives-ouvertes.fr/hal-03223831
https://hal.archives-ouvertes.fr/hal-03223831
Publikováno v:
IFAC-PapersOnLine. 52:13-17
In this paper we aim at assessing the potential of Binary Matrix Factorization (BMF) in the implementation of recommendation systems, by analyzing a Netflix dataset. In particular, we study the explanatory power and the prediction capability of a par