Zobrazeno 1 - 10
of 44
pro vyhledávání: '"David Alonso-Gutiérrez"'
Publikováno v:
Communications in Contemporary Mathematics.
In this paper, we study various Rogers–Shephard-type inequalities for the lattice point enumerator [Formula: see text] on [Formula: see text]. In particular, for any non-empty convex bounded sets [Formula: see text], we show that [Formula: see text
Autor:
David Alonso-Gutiérrez, C. Hugo Jiménez, Bernardo González Merino, Rafael Villa, Shiri Artstein-Avidan
Publikováno v:
Mathematische Annalen. 374:1719-1771
We provide functional analogues of the classical geometric inequality of Rogers and Shephard on products of volumes of sections and projections. As a consequence we recover (and obtain some new) functional versions of Rogers–Shephard type inequalit
Autor:
David Alonso-Gutiérrez, Julio Bernués
Publikováno v:
Israel Journal of Mathematics. 230:895-917
In this paper we prove that for any p ∈ [2,∞) the $$\ell_p^n$$ unit ball, $$B_p^n$$ , satisfies the square negative correlation property with respect to every orthonormal basis, while we show it is not always the case for 1 ≤ p ≤ 2. In order
Autor:
María A. Hernández Cifre, David Alonso-Gutiérrez, Jesús Yepes Nicolás, Artem Zvavitch, Michael Roysdon
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
In this paper we prove a series of Rogers–Shephard type inequalities for convex bodies when dealing with measures on the Euclidean space with either radially decreasing densities or quasi-concave densities attaining their maximum at the origin. Fun
Autor:
Julian Grote, Elisabeth M. Werner, Zakhar Kabluchko, Christoph Thäle, Florian Besau, David Alonso-Gutiérrez, Matthias Reitzner, Beatrice-Helen Vritsiou
Publikováno v:
Zaguán: Repositorio Digital de la Universidad de Zaragoza
Universidad de Zaragoza
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Universidad de Zaragoza
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Central limit theorems for the log-volume of a class of random convex bodies in R n \mathbb {R}^n are obtained in the high-dimensional regime, that is, as n → ∞ n\to \infty . In particular, the case of random simplices pinned at the origin and si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d15e6e8e995fc8cc3f8f4d1a7d6d0f3e
http://zaguan.unizar.es/record/95758
http://zaguan.unizar.es/record/95758
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
Having its origin in theoretical computer science, the Kannan-Lov��sz-Simonovits (KLS) conjecture is one of the major open problems in asymptotic convex geometry and high-dimensional probability theory today. In this work, we establish a new conn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a807639ba1215d4c27eb52f16899806c
http://zaguan.unizar.es/record/107385
http://zaguan.unizar.es/record/107385
Autor:
Joscha Prochno, David Alonso-Gutiérrez
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
In this paper, we study the asymptotic thin-shell width concentration for random vectors uniformly distributed in Orlicz balls. We provide both asymptotic upper and lower bounds on the probability of such a random vector $X_n$ being in a thin shell o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f29aa41719c4d8b0584e274f0a32be6c
http://arxiv.org/abs/2011.07523
http://arxiv.org/abs/2011.07523
Publikováno v:
Advances in Applied Mathematics. 99:1-35
The paper provides a description of the large deviation behavior for the Euclidean norm of projections of l p n -balls to high-dimensional random subspaces. More precisely, for each integer n ≥ 1 , let k n ∈ { 1 , … , n − 1 } , E ( n ) be a u
Autor:
Jesús Bastero, David Alonso-Gutiérrez
Publikováno v:
Revista Matemática Iberoamericana. 34:879-904
We show that for any 1≤p≤∞, the family of random vectors uniformly distributed on hyperplane projections of the unit ball of lnp verify the variance conjecture Var|X|2≤Cmaxξ∈Sn−1E⟨X,ξ⟩2E|X|2, where C depends on p but not on the dime
Autor:
David Alonso-Gutiérrez
Publikováno v:
The Journal of Geometric Analysis. 29:299-315
We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of $$\ell _p$$ -dif