Zobrazeno 1 - 10
of 32
pro vyhledávání: '"David Achanccaray"'
Autor:
Chatrin Phunruangsakao, David Achanccaray, Saugat Bhattacharyya, Shin-Ichi Izumi, Mitsuhiro Hayashibe
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Abstract The use of neurofeedback is an important aspect of effective motor rehabilitation as it offers real-time sensory information to promote neuroplasticity. However, there is still limited knowledge about how the brain’s functional networks re
Externí odkaz:
https://doaj.org/article/de4734168ed04e279442032b68964f4b
Deep Adversarial Domain Adaptation With Few-Shot Learning for Motor-Imagery Brain-Computer Interface
Publikováno v:
IEEE Access, Vol 10, Pp 57255-57265 (2022)
Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-
Externí odkaz:
https://doaj.org/article/42fd81e5cdce4c7b83e3fcfb216b317b
Publikováno v:
Frontiers in Human Neuroscience, Vol 16 (2022)
IntroductionEmerging deep learning approaches to decode motor imagery (MI) tasks have significantly boosted the performance of brain-computer interfaces. Although recent studies have produced satisfactory results in decoding MI tasks of different bod
Externí odkaz:
https://doaj.org/article/beb0063e8e9c42d6a4f304ecaf22c5a2
Publikováno v:
Computational Intelligence and Neuroscience, Vol 2021 (2021)
In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last
Publikováno v:
IEEE Transactions on Neural Systems and Rehabilitation Engineering
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2020, 28 (12), pp.2754-2761. ⟨10.1109/TNSRE.2020.3043418⟩
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2020, 28 (12), pp.2754-2761. ⟨10.1109/TNSRE.2020.3043418⟩
The P300 wave is commonly used in Brain-Computer Interface technology due to its higher bit rates when compared to other BCI paradigms. P300 classification pipelines based on Riemannian Geometry provide accuracies on par with state-of-the-art pipelin
Autor:
David Achanccaray, Mitsuhiro Hayashibe
Publikováno v:
IEEE Transactions on Medical Robotics and Bionics. 2:692-699
Motor imagery (MI) tasks of different body parts have been successfully decoded by conventional classifiers, such as LDA and SVM. On the other hand, decoding MI tasks within the same limb is a challenging problem with these classifiers; however, it w
Publikováno v:
2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
Publikováno v:
2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
Publikováno v:
Annals of Neurology. 84:S1-S280
Autor:
Luis Baquerizo Sedano, Christian Flores Vega, David Achanccaray Diaz, Mario Wong Egusquiza, Luis Aguilar Mendoza, Marilia Baquerizo Sedano, Edward Susanibar Mesías, Hugo Umeres Cáceres
Publikováno v:
Avances en Psicología. 25:39-47
La via auditiva, como mecanismo neurobiologico implicado en el autismo, puede ser evaluada por potenciales evocados. El objetivo de este estudio fue estimar la respuesta auditiva provocada del tronco encefa lico a traves de pulsos, considerando la la