Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Davi Maximo"'
Publikováno v:
Biblioteca Digital de Teses e Dissertações da UFCUniversidade Federal do CearáUFC.
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
Neste trabalho mostraremos resultados sobre a colagem de espaÃos anelados e suas aplicacÃes a teoria de Esquemas, seguindo a linha de [5]. O principal resultado sobre espaÃos Ã
Neste trabalho mostraremos resultados sobre a colagem de espaÃos anelados e suas aplicacÃes a teoria de Esquemas, seguindo a linha de [5]. O principal resultado sobre espaÃos Ã
Autor:
Yevgeny Liokumovich, Davi Maximo
Publikováno v:
Perspectives in Scalar Curvature ISBN: 9789811249990
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::21a63540aba851bee1c7ee1b85457cc2
https://doi.org/10.1142/9789811273230_0022
https://doi.org/10.1142/9789811273230_0022
Autor:
Davi Maximo, Otis Chodosh
Publikováno v:
Notices of the American Mathematical Society. 68:1
Publikováno v:
Geom. Topol. 20, no. 5 (2016), 2905-2922
We prove that the space of smooth Riemannian metrics on the three-ball with non-negative Ricci curvature and strictly convex boundary is path connected; and, moreover, that the associated moduli space (i.e., modulo orientation-preserving diffeomorphi
Autor:
Otis Chodosh, Davi Maximo
Publikováno v:
J. Differential Geom. 104, no. 3 (2016), 399-418
We show that for an immersed two-sided minimal surface in $\mathbb{R}^3$, there is a lower bound on the index depending on the genus and number of ends. Using this, we show the nonexistence of an embedded minimal surface in $\mathbb{R}^3$ of index $2
Autor:
Davi Maximo
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2014:153-171
In this paper we prove a conjecture by Feldman–Ilmanen–Knopf (2003) that the gradient shrinking soliton metric they constructed on the tautological line bundle over ℂℙ 1 $\mathbb {CP}^1$ is the uniform limit of blow-ups of a type I Ricci flow
Autor:
Davi Maximo, Richard H. Bamler
Publikováno v:
Mathematische Annalen, vol 369, iss 1-2
Bamler, RH; & Maximo, D. (2017). Almost-rigidity and the extinction time of positively curved Ricci flows. Mathematische Annalen, 369(1-2), 899-911. doi: 10.1007/s00208-016-1494-y. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/65c5k6xq
Bamler, RH; & Maximo, D. (2017). Almost-rigidity and the extinction time of positively curved Ricci flows. Mathematische Annalen, 369(1-2), 899-911. doi: 10.1007/s00208-016-1494-y. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/65c5k6xq
© 2016, Springer-Verlag Berlin Heidelberg. We prove that Ricci flows with almost maximal extinction time must be nearly round, provided that they have positive isotropic curvature when crossed with R2. As an application, we show that positively curv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6330eb0f7da56ec2b8fe42d103ee6a11
http://arxiv.org/abs/1506.03421
http://arxiv.org/abs/1506.03421
We prove a structural theorem that provides a precise local picture of how a sequence of closed embedded minimal hypersurfaces with uniformly bounded index (and volume if the ambient dimension is greater than three) in a Riemannian manifold of dimens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8aac48a12f66ad63fbc188dafc18b2e5
We prove L∞ bounds and estimates of the modulus of continuity of solutions to the Poisson problem for the normalized infinity and p-Laplacian, namely $$\begin{array}{ll} -\Delta_p^N u=f\quad{\rm for } \; n < p \leq\infty.\end{array}$$ We are able t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f43c84a816a972797e002cfd33114871
http://hdl.handle.net/20.500.11767/11603
http://hdl.handle.net/20.500.11767/11603
Publikováno v:
J. Differential Geom. 106, no. 1 (2017), 139-186
We prove the existence of free boundary minimal annuli inside suitably convex subsets of three-dimensional Riemannian manifolds of nonnegative Ricci curvature. This includes strictly convex domains in $\mathbb{R}^3$, thereby solving an open problem o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15da907ea64627d0d0c830f048cd2624