Zobrazeno 1 - 10
of 1 084
pro vyhledávání: '"Dataflow architecture"'
Autor:
Dionysios Filippas, Christodoulos Peltekis, Vasileios Titopoulos, Ioannis Kansizoglou, Georgios CH. Sirakoulis, Antonios Gasteratos, Giorgos Dimitrakopoulos
Publikováno v:
IEEE Access, Vol 12, Pp 57194-57208 (2024)
Convolution neural networks (CNNs) are widely applied in many machine learning applications. Hardware acceleration for CNNs is crucial, given their high computational intensity and the demand for enhanced energy efficiency and reduced latency in appl
Externí odkaz:
https://doaj.org/article/33c1766733254d368409fdccc04d5072
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lantsov R.A.
Publikováno v:
Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki, Vol 18, Iss 6, Pp 1023-1033 (2018)
The paper considers open computing systems, which provide the necessary growth of performance and memory by mechanical addition of new units without affecting the existing software environment. Such computing systems are based on the application of a
Externí odkaz:
https://doaj.org/article/658d9a15aae6464dbf21292675756cf0
Autor:
Krste Asanovic, Tae Jun Ham, Brendan Sweeney, Seong Hoon Seo, Jae W. Lee, David Bruns-Smith, U Gyeong Song, Yejin Lee, Young H. Oh, Lisa Wu Wills
Publikováno v:
IEEE Micro. 41:42-49
This article presents a framework, Genesis (genome analysis), to efficiently and flexibly accelerate generic data manipulation operations that have become performance bottlenecks in the genomic data processing pipeline utilizing FPGAs-as-a-service. G
Publikováno v:
Information Sciences. 547:1136-1153
Dataflow architecture has native advantages in achieving high instruction parallelism and power efficiency for today’s emerging applications such as high performance computing and deep neural network. In dataflow computing, the execution of instruc
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Future Generation Computer Systems. 112:580-588
Dataflow architecture has been proved to be promising in high-performance computing. Traditional dataflow architectures are not efficient enough in typical scientific applications such as stencil and FFT due to low utilization of function units. Base
Publikováno v:
IEEE Journal of Solid-State Circuits. 55:2691-2702
A scalable deep-learning accelerator supporting the training process is implemented for device personalization of deep convolutional neural networks (CNNs). It consists of three processor cores operating with distinct energy-efficient dataflow for di
Publikováno v:
CCF Transactions on High Performance Computing. 2:362-375
Graph processing is widely used in modern society, such as social networks, bioinformatics, and information networks. It is observed that the dataflow architecture has been demonstrated to effectively resolve the challenges of low instruction-level p