Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Dat Tien Ngo"'
Autor:
Diego P. Morales, Katja Pinker-Domenig, Marc B. I. Lobbes, Anke Meyer-Bäse, Encarnacin Castillo, Amirhessam Tahmassebi, Dat Tien Ngo, Antonio García
Publikováno v:
Smart Biomedical and Physiological Sensor Technology XV.
Diagnostically challenging breast tumors and Non-Mass-Enhancing (NME) lesions are often characterized by spatial and temporal heterogeneity, thus difficult to detect and classify. Differently from mass enhancing tumors they have an atypical temporal
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marc B. I. Lobbes, Anke Meyer-Bäse, Dat Tien Ngo, Claudia Plant, Thomas Schlossbauer, Felix Retter, Maribel Lockwood, Olmo Zavala
Publikováno v:
SPIE Proceedings.
Small and non-mass-enhancing lesions are diagnostically challenging and easily missed in a routine clinical diagnosis. Compared to mass-enhancing lesions, they show fundamentally di®erent morphologies and kinetic characteristics. To overcome these l
Autor:
Olmo Zavala, Marc B. I. Lobbes, Maribel Lockwood, Jamie D. Shutler, Anke Meyer-Bäse, Dat Tien Ngo
Publikováno v:
SPIE Proceedings.
Spatio-temporal feature extraction represents a challenge however critical step for the differential diagnosis of non-mass-enhancing lesions. The atypical dynamical behavior of these lesions paired with non well-defined tumor borders requires novel a
Publikováno v:
Computer Vision – ECCV 2012 ISBN: 9783642337116
ECCV (3)
ECCV (3)
We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c6fbe838de349ba405dba24a729f9897
https://doi.org/10.1007/978-3-642-33712-3_30
https://doi.org/10.1007/978-3-642-33712-3_30
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence
We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image in