Zobrazeno 1 - 10
of 106
pro vyhledávání: '"Das, Soumyadip"'
Autor:
Das, Soumyadip, Majumder, Souradeep
Let $k$ be an algebraically closed field of any characteristic, and let $(X,P)$ be an orbifold curve over $k$. We construct the moduli space $\mathrm{M}_{(X,P)}^{\mathrm{ss}}(n, \Delta)$ of $P$-semistable bundles on $(X,P)$ of rank $n$ and determinan
Externí odkaz:
http://arxiv.org/abs/2406.16337
Autor:
Das, Soumyadip
We completely characterize the covers of connected orbifold curves which preserve slope stability of vector bundles under the pullback morphism. More precisely, given a cover $f \colon (Y,Q) \longrightarrow (X,P)$ of connected orbifold curves, we sho
Externí odkaz:
http://arxiv.org/abs/2211.02342
Autor:
Das, Soumyadip
We study the \'{e}tale fundamental groups of singular reduced connected curves defined over an algebraically closed field of arbitrary prime characteristic. It is shown that when the curve is projective, the \'{e}tale fundamental group is a free prod
Externí odkaz:
http://arxiv.org/abs/2203.11870
Let $f : X \rightarrow Y$ be a separable finite surjective map between irreducible normal projective varieties defined over an algebraically closed field, such that the corresponding homomorphism between \'etale fundamental groups $f_* : \pi_1^{\rm e
Externí odkaz:
http://arxiv.org/abs/2203.03246
Autor:
Das, Soumyadip, Misra, Snehajit
In this article, we study the behavior of the stability of pullback of a vector bundle under a finite morphism from a (not necessarily smooth) stacky curve to an orbifold curve. We establish a categorical equivalence between proper formal orbifold cu
Externí odkaz:
http://arxiv.org/abs/2111.15652
Autor:
Das, Soumyadip
We obtain new evidence for the Purely Wild Inertia Conjecture posed by Abhyankar and for its generalization. We show that this generalized conjecture is true for any product of simple Alternating groups in odd characteristics, and for any product of
Externí odkaz:
http://arxiv.org/abs/2111.15495
Autor:
Das, Soumyadip
Publikováno v:
Isr. J. Math. (2022)
Studying two point branched Galois covers of the projective line we prove the Inertia Conjecture for the Alternating groups $A_{p+1}$, $A_{p+3}$, $A_{p+4}$ for any odd prime $p \equiv 2 \pmod{3}$ and for the group $A_{p+5}$ when additionally $4 \nmid
Externí odkaz:
http://arxiv.org/abs/2002.04934
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Th\'eor. Nombres Bordeaux 34 (2022), no. 1, 251--269
It is conjectured that if k is an algebraically closed field of characteristic p > 0, then any branched G-cover of smooth projective k-curves where the "KGB" obstruction vanishes and where a p-Sylow subgroup of G is cyclic lifts to characteristic 0.
Externí odkaz:
http://arxiv.org/abs/1912.12797
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.