Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Das, Joyentanuj"'
Autor:
Das, Joyentanuj, Mahato, Iswar
For a connected graph $G$, let $A(G)$ be the adjacency matrix of $G$ and $D(G)$ be the diagonal matrix of the degrees of the vertices in $G$. The $A_{\alpha}$-matrix of $G$ is defined as \begin{align*} A_\alpha (G) = \alpha D(G) + (1-\alpha) A(G) \qu
Externí odkaz:
http://arxiv.org/abs/2311.13364
Autor:
Das, Joyentanuj, Mohanty, Sumit
Let $G$ be a connected graph on $n$ vertices and $d_{ij}$ be the length of the shortest path between vertices $i$ and $j$ in $G$. We set $d_{ii}=0$ for every vertex $i$ in $G$. The squared distance matrix $\Delta(G)$ of $G$ is the $n\times n$ matrix
Externí odkaz:
http://arxiv.org/abs/2311.01069
Autor:
Das, Joyentanuj
Let $G(n,k)$ be the class of clique trees on $n$ vertices and zero forcing number $k$, where $\left \lfloor \frac{n}{2} \right \rfloor + 1 \le k \le n-1$ and each block is a clique of size at least $3$. In this article, we proved the existence and un
Externí odkaz:
http://arxiv.org/abs/2308.02975
Autor:
Das, Joyentanuj, Mohanty, Sumit
A connected graph is called a block graph if each of its blocks is a complete graph. Let $\mathbf{Bl}(\textbf{k}, \varphi)$ be the class of block graphs on $\textbf{k}$ vertices with given dissociation number $\varphi$. In this article, we have shown
Externí odkaz:
http://arxiv.org/abs/2301.12790
Autor:
Das, Joyentanuj
The Sombor index is a topological index in graph theory defined by Gutman in 2021. In this article, we find the maximum Sombor index of trees of order $\mathbf{n}$ with a given independence number $\alpha$, where $\ceil*{\frac{\mathbf{n}}{2}} \leq \a
Externí odkaz:
http://arxiv.org/abs/2212.10045
Autor:
Das, Joyentanuj, Prajapaty, Yogesh
The Sombor index is a topological index in graph theory defined by Gutman in 2021. In this article we find the maximum Sombor index of unicyclic graphs with a fixed number of pendant vertices. We also provide the unique graph among the chosen class w
Externí odkaz:
http://arxiv.org/abs/2212.07732
Autor:
Das, Joyentanuj, Mohanty, Sumit
Publikováno v:
In Applied Mathematics and Computation 15 March 2024 465
Autor:
Das, Joyentanuj, Jana, Ritabrata
For a connected graph $G$, the Wiener index, denoted by $W(G)$, is the sum of the distance of all pairs of distinct vertices and the eccentricity, denoted by $\varepsilon(G)$, is the sum of the eccentricity of individual vertices. In \cite{Kc}, the a
Externí odkaz:
http://arxiv.org/abs/2104.02930
Autor:
Das, Joyentanuj, Mohanty, Sumit
Let $G = K_{n_1,n_2,\cdots,n_t}$ be a complete $t$-partite graph on $n=\sum_{i=1}^t n_i$ vertices. The distance between vertices $i$ and $j$ in $G$, denoted by $d_{ij}$ is defined to be the length of the shortest path between $i$ and $j$. The squared
Externí odkaz:
http://arxiv.org/abs/2012.04341
Autor:
Das, Joyentanuj, Mohanty, Sumit
A connected graph is called a bi-block graph if each of its blocks is a complete bipartite graph. Let $\mathcal{B}(\mathbf{k}, \alpha)$ be the class of bi-block graph on $\mathbf{k}$ vertices with given independence number $\alpha$. It is easy to see
Externí odkaz:
http://arxiv.org/abs/2004.04488