Zobrazeno 1 - 10
of 67 394
pro vyhledávání: '"Darzi"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pickersgill M; Centre for Biomedicine, Self and Society, Usher Institute, The University of Edinburgh, EH16 4UX. Electronic address: martyn.pickersgill@ed.ac.uk.
Publikováno v:
The lancet. Psychiatry [Lancet Psychiatry] 2024 Dec; Vol. 11 (12), pp. 961-962.
Autor:
Warner M; Welsh Institute for Health and Social Care, University of South Wales, Pontypridd, UK.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Oct 22; Vol. 387, pp. q2282. Date of Electronic Publication: 2024 Oct 22.
Autor:
Jeyakumar P; Directorate of Public Health, Stoke-on-Trent City Council, Stoke-on-Trent ST4 1HH, UK., Gunther S; Directorate of Public Health, Stoke-on-Trent City Council, Stoke-on-Trent ST4 1HH, UK., Badrinath P; Directorate of Public Health, Stoke-on-Trent City Council, Stoke-on-Trent ST4 1HH, UK.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Oct 21; Vol. 387, pp. q2271. Date of Electronic Publication: 2024 Oct 21.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Oct 15; Vol. 387, pp. q2263. Date of Electronic Publication: 2024 Oct 15.
Autor:
Tingle J; Associate Professor, Birmingham Law School, University of Birmingham.
Publikováno v:
British journal of nursing (Mark Allen Publishing) [Br J Nurs] 2024 Oct 10; Vol. 33 (18), pp. 900-901.
Autor:
Cowper A; UK.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Sep 17; Vol. 386, pp. q2040. Date of Electronic Publication: 2024 Sep 17.
Autor:
Fisher B; Nuffield Trust.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Jul 24; Vol. 386, pp. q1642. Date of Electronic Publication: 2024 Jul 24.
Autor:
Iacobucci G; The BMJ.
Publikováno v:
BMJ (Clinical research ed.) [BMJ] 2024 Jul 12; Vol. 386, pp. q1552. Date of Electronic Publication: 2024 Jul 12.
Autor:
Bao, Rina, Darzi, Erfan, He, Sheng, Hsiao, Chuan-Heng, Hussain, Mohammad Arafat, Li, Jingpeng, Bjornerud, Atle, Grant, Ellen, Ou, Yangming
Foundation models refer to artificial intelligence (AI) models that are trained on massive amounts of data and demonstrate broad generalizability across various tasks with high accuracy. These models offer versatile, one-for-many or one-for-all solut
Externí odkaz:
http://arxiv.org/abs/2411.02745