Zobrazeno 1 - 10
of 261
pro vyhledávání: '"Daryl Cooper"'
Autor:
Daryl Cooper, Ilesanmi Adeboye
Publikováno v:
Journal of Topology and Analysis. 12:533-546
The area of a convex projective surface of genus [Formula: see text] is at least [Formula: see text] where [Formula: see text] is the vector of triangle invariants of Bonahon–Dreyer and [Formula: see text] are the Fock–Goncharov triple ratios.
Autor:
Daryl Cooper
There is a compactification of the space of representations of a finitely generated group into the groups of isometries of all spaces with $\Delta$-thin triangles. The ideal points are actions on $\mathbb R$-trees. It is a geometric reformulation and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3bf3200645b6cad7ecb4e4e42ee2ffd
Autor:
Daryl Cooper, David Futer
Publikováno v:
Geom. Topol. 23, no. 1 (2019), 241-298
This paper proves that every finite volume hyperbolic 3-manifold M contains a ubiquitous collection of closed, immersed, quasi-Fuchsian surfaces. These surfaces are ubiquitous in the sense that their preimages in the universal cover separate any pair
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88b91776cf0ece037e7e21e7cc1b7315
https://projecteuclid.org/euclid.gt/1552356082
https://projecteuclid.org/euclid.gt/1552356082
Publikováno v:
Cooper, D; Long, D; & Tillmann, S. (2018). Deforming convex projective manifolds. Geometry and Topology, 22(3), 1349-1404. doi: 10.2140/gt.2018.22.1349. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/7160t8q9
Geometry & Topology, vol 22, iss 3
Geometry and Topology, vol 22, iss 3
Geom. Topol. 22, no. 3 (2018), 1349-1404
Geometry & Topology, vol 22, iss 3
Geometry and Topology, vol 22, iss 3
Geom. Topol. 22, no. 3 (2018), 1349-1404
We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul which asserts that for a compact manifold
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0b3cd2bf77b895b34dc3ce707427098
http://www.escholarship.org/uc/item/7160t8q9
http://www.escholarship.org/uc/item/7160t8q9
Autor:
Jason Fox Manning, Daryl Cooper
Publikováno v:
Geometriae Dedicata. 177:165-187
We give counterexamples to a version of the simple loop conjecture in which the target group is $$ PSL (2,\mathbb C)$$ . These examples answer a question of Minsky in the negative.
Autor:
Daryl Cooper
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society, vol 21, iss 4
Cooper, D. (2017). The Heisenberg group acts on a strictly convex domain. Conformal Geometry and Dynamics, 21(4), 101-104. doi: 10.1090/ecgd/307. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/16x4p858
Conformal Geometry and Dynamics, vol 21, iss 4
Cooper, D. (2017). The Heisenberg group acts on a strictly convex domain. Conformal Geometry and Dynamics, 21(4), 101-104. doi: 10.1090/ecgd/307. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/16x4p858
Conformal Geometry and Dynamics, vol 21, iss 4
© 2017 American Mathematical Society. This paper gives the first example of a unipotent group that is not virtually abelian and preserves a strictly convex domain.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3ce5ffd32c34bcaf25fe5b0f861ad1c
https://escholarship.org/uc/item/16x4p858
https://escholarship.org/uc/item/16x4p858
A generalized cusp $C$ is diffeomorphic to $[0,\infty)$ times a closed Euclidean manifold. Geometrically $C$ is the quotient of a properly convex domain by a lattice, $\Gamma$, in one of a family of affine groups $G(\psi)$, parameterized by a point $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7cdd90c09d541c13fb911d3a02e6f400
Autor:
Darren D. Long, Daryl Cooper
Publikováno v:
Cooper, D; & Long, DD. (2015). A generalization of the Epstein-Penner construction to projective manifolds. Proceedings of the American Mathematical Society, 143(10), 4561-4569. doi: 10.1090/S0002-9939-2015-12579-8. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/1176p70q
Proceedings of the American Mathematical Society, vol 143, iss 10
Proceedings of the American Mathematical Society, vol 143, iss 10
We extend the canonical cell decomposition due to Epstein and Penner of a hyperbolic manifold with cusps to the strictly convex setting. It follows that a sufficiently small deformation of the holonomy of a finite volume strictly convex real projecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5df7ab36333177d05bbcbb77d119275
http://www.escholarship.org/uc/item/1176p70q
http://www.escholarship.org/uc/item/1176p70q
Publikováno v:
Experimental Mathematics. 15:291-305
The geometric structure on a closed orientable hyperbolic 3- manifold determines a discrete faithful representation ρ of its fundamental group into SO+(3, 1), unique up to conjugacy. Although Mostow rigidity prohibits us from deforming ρ, we can tr
Autor:
Mark D. Baker, Daryl Cooper
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.1199-1228. 〈10.2140/agt.2015.15.1199〉
Algebraic and Geometric Topology, vol 15, iss 2
Algebraic and Geometric Topology, 2015, 15 (2), pp.1199-1228. ⟨10.2140/agt.2015.15.1199⟩
Baker, MD; & Cooper, D. (2015). Finite-volume hyperbolic 3–manifolds contain immersed quasi-Fuchsian surfaces. Algebraic and Geometric Topology, 15(2), 1199-1228. doi: 10.2140/agt.2015.15.1199. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/0qz4002x
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.1199-1228. ⟨10.2140/agt.2015.15.1199⟩
Algebraic & Geometric Topology, vol 15, iss 2
Algebr. Geom. Topol. 15, no. 2 (2015), 1199-1228
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.1199-1228. 〈10.2140/agt.2015.15.1199〉
Algebraic and Geometric Topology, vol 15, iss 2
Algebraic and Geometric Topology, 2015, 15 (2), pp.1199-1228. ⟨10.2140/agt.2015.15.1199⟩
Baker, MD; & Cooper, D. (2015). Finite-volume hyperbolic 3–manifolds contain immersed quasi-Fuchsian surfaces. Algebraic and Geometric Topology, 15(2), 1199-1228. doi: 10.2140/agt.2015.15.1199. UC Santa Barbara: Retrieved from: http://www.escholarship.org/uc/item/0qz4002x
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2015, 15 (2), pp.1199-1228. ⟨10.2140/agt.2015.15.1199⟩
Algebraic & Geometric Topology, vol 15, iss 2
Algebr. Geom. Topol. 15, no. 2 (2015), 1199-1228
The paper contains a new proof that a complete, non-compact hyperbolic $3$-manifold $M$ with finite volume contains an immersed, closed, quasi-Fuchsian surface.
Comment: Final version to appear in AGT. Some typos corrected, particularly def (3.6
Comment: Final version to appear in AGT. Some typos corrected, particularly def (3.6
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::331f852c075ea441f518fe81350b2320
https://hal.archives-ouvertes.fr/hal-01059307
https://hal.archives-ouvertes.fr/hal-01059307