Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Darvish, Vahid"'
Let $\mathcal{A}$ be a prime $\ast$-algebra and $\Phi$ preserves triple $\ast$-Jordan derivation on $\mathcal{A}$, that is, for every $A,B \in \mathcal{A}$, $$\Phi(A\diamond B \diamond C)=\Phi(A)\diamond B\diamond C+A\diamond \Phi(B)\diamond C+A\diam
Externí odkaz:
http://arxiv.org/abs/1903.00451
In this paper, we prove some Hermite-Hadamard type inequalities for operator geometrically convex functions for non-commutative operators. Keywords: Operator geometrically convex function, Hermite-Hadamard inequality.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/1802.07018
Autor:
Darvish, Vahid
In this paper, we study a new iterative method for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the frame work of reflexive real Banach spaces. Moreover, we prove the strong convergence theorem for finding comm
Externí odkaz:
http://arxiv.org/abs/1512.00243
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for opera
Externí odkaz:
http://arxiv.org/abs/1511.06587
In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which
Externí odkaz:
http://arxiv.org/abs/1508.03109
Let $\mathcal{A}$ be a factor von Neumann algebra and $\phi$ be the $\ast$-Jordan derivation on $A$, that is, for every $A,B \in \mathcal{A}$, $\phi(A\diamond_{1} B) = \phi(A)\diamond_{1} B + A\diamond_{1}\phi( B)$ where $A\diamond_{1} B = AB + BA^{\
Externí odkaz:
http://arxiv.org/abs/1504.04147
Let $\mathcal{A}$ and $\mathcal{B}$ be two $C^{*}$-algebras such that $\mathcal{B}$ is prime. In this paper, we investigate the additivity of map $\Phi$ from $\mathcal{A}$ onto $\mathcal{B}$ that are bijective unital and satisfies $$\Phi(AP+\eta PA^{
Externí odkaz:
http://arxiv.org/abs/1504.00100
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\mathcal{A}$ and $\mathcal{B}$ be two prime $C^{*}$-algebras. In this paper, we investigate the additivity of map $\Phi$ from $\mathcal{A}$ onto $\mathcal{B}$ that are bijective unital and satisfies $$\Phi(AP+\lambda PA^{*})=\Phi(A)\Phi(P)+\lamb
Externí odkaz:
http://arxiv.org/abs/1405.4611