Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Dariusz Kosz"'
Publikováno v:
Israel Journal of Mathematics. 254:1-38
Autor:
Dawid Hanrahan, Dariusz Kosz
We prove genuinely sharp estimates for the Jacobi heat kernels introduced in the context of the multidimensional cone $\mathbb{V}^{d+1}$ and its surface $\mathbb{V}^{d+1}_0$. To do so, we combine the theory of Jacobi polynomials on the cone explored
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b7ced71457a2aec9c10681d59b26a73
http://arxiv.org/abs/2210.14590
http://arxiv.org/abs/2210.14590
Autor:
DARIUSZ KOSZ
We present a systematic approach to the problem whether a topologically infinite-dimensional space can be made homogeneous in the Coifman--Weiss sense. The answer to the examined question is negative, as expected. Our leading representative of spaces
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0919c8d3dd358b94ab333914ce64eae8
http://arxiv.org/abs/2210.01250
http://arxiv.org/abs/2210.01250
Autor:
Dariusz Kosz
Publikováno v:
Studia Mathematica. 258:103-119
We answer the recently posed questions regarding the problem of differentiation of integrals for the Rubio de Francia basis $\mathcal{R}$ in the infinite torus $\mathbb{T}^\omega$. In particular, we prove that $\mathcal{R}$ does not differentiate $L^
We study maximal operators related to bases on the infinite-dimensional torus $\mathbb{T}^\omega$. {For the normalized Haar measure $dx$ on $\mathbb{T}^\omega$ it is known that $M^{\mathcal{R}_0}$, the maximal operator associated with the dyadic basi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ef5e0b965d0150637ea1c284b39e192
http://arxiv.org/abs/2109.04811
http://arxiv.org/abs/2109.04811
Autor:
Dariusz Kosz
Publikováno v:
Studia Mathematica. 241:57-70
In this article we study a special class of non-doubling metric measure spaces for which there is a significant difference between the incidence of weak and restricted weak type $(p,p)$ inequalities for the centered and non-centered Hardy--Littlewood
Publikováno v:
Journal of Functional Analysis. 281:109037
We prove the continuity of the map f ↦ M ˜ f from B V ( R ) to itself, where M ˜ is the uncentered Hardy–Littlewood maximal operator. This answers a question of Carneiro, Madrid and Pierce.
Autor:
Dariusz Kosz
We investigate a dichotomy property for Hardy--Littlewood maximal operators, non-centered $M$ and centered $M^c$, that was noticed by Bennett, DeVore and Sharpley. We illustrate the full spectrum of possible cases related to the occurrence or not of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8fdabfcbb4ff74818e4a9f1ad3d0025
http://arxiv.org/abs/1903.11938
http://arxiv.org/abs/1903.11938
Autor:
Dariusz Kosz
In this article, we investigate a special class of non-doubling metric measure spaces in order to describe the possible configurations of P k , s c {P_{k,{\mathrm{s}}}^{{\mathrm{c}}}} , P k , s {P_{k,{\mathrm{s}}}} , P k , w c {P_{k,{\mathrm{w}}}^{{\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86c13c96050613c33042bbaee00b1545
Autor:
Dariusz Kosz
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 37-54
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publ. Mat. 62, no. 1 (2018), 37-54
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 62, Núm. 1 (2018); p. 37-54
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Publ. Mat. 62, no. 1 (2018), 37-54
Recercat. Dipósit de la Recerca de Catalunya
instname
In this article we characterize all possible cases that may occur in the relations between the sets of $p$ for which weak type $(p,p)$ and strong type $(p,p)$ inequalities for the Hardy--Littlewood maximal operators, both centered and non-centered, h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0275f14446528016a2f131dbd6d7dd8a
https://ddd.uab.cat/record/182681
https://ddd.uab.cat/record/182681