Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Darby, James P"'
In this work we used $\textit{ab-initio}$ random structure searching (AIRSS) to carry out a systematic search for crystalline Na-Ge materials at both 0 and 10 GPa. The high-throughput structural relaxations were accelerated using a machine-learned in
Externí odkaz:
http://arxiv.org/abs/2402.15299
Autor:
Batatia, Ilyes, Benner, Philipp, Chiang, Yuan, Elena, Alin M., Kovács, Dávid P., Riebesell, Janosh, Advincula, Xavier R., Asta, Mark, Avaylon, Matthew, Baldwin, William J., Berger, Fabian, Bernstein, Noam, Bhowmik, Arghya, Blau, Samuel M., Cărare, Vlad, Darby, James P., De, Sandip, Della Pia, Flaviano, Deringer, Volker L., Elijošius, Rokas, El-Machachi, Zakariya, Falcioni, Fabio, Fako, Edvin, Ferrari, Andrea C., Genreith-Schriever, Annalena, George, Janine, Goodall, Rhys E. A., Grey, Clare P., Grigorev, Petr, Han, Shuang, Handley, Will, Heenen, Hendrik H., Hermansson, Kersti, Holm, Christian, Jaafar, Jad, Hofmann, Stephan, Jakob, Konstantin S., Jung, Hyunwook, Kapil, Venkat, Kaplan, Aaron D., Karimitari, Nima, Kermode, James R., Kroupa, Namu, Kullgren, Jolla, Kuner, Matthew C., Kuryla, Domantas, Liepuoniute, Guoda, Margraf, Johannes T., Magdău, Ioan-Bogdan, Michaelides, Angelos, Moore, J. Harry, Naik, Aakash A., Niblett, Samuel P., Norwood, Sam Walton, O'Neill, Niamh, Ortner, Christoph, Persson, Kristin A., Reuter, Karsten, Rosen, Andrew S., Schaaf, Lars L., Schran, Christoph, Shi, Benjamin X., Sivonxay, Eric, Stenczel, Tamás K., Svahn, Viktor, Sutton, Christopher, Swinburne, Thomas D., Tilly, Jules, van der Oord, Cas, Varga-Umbrich, Eszter, Vegge, Tejs, Vondrák, Martin, Wang, Yangshuai, Witt, William C., Zills, Fabian, Csányi, Gábor
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and hum
Externí odkaz:
http://arxiv.org/abs/2401.00096
Autor:
Klawohn, Sascha, Csányi, Gábor, Darby, James P., Kermode, James R., Caro, Miguel A., Bartók, Albert P.
Gaussian Approximation Potentials are a class of Machine Learned Interatomic Potentials routinely used to model materials and molecular systems on the atomic scale. The software implementation provides the means for both fitting models using ab initi
Externí odkaz:
http://arxiv.org/abs/2310.03921
Autor:
Witt, William C., van der Oord, Cas, Gelžinytė, Elena, Järvinen, Teemu, Ross, Andres, Darby, James P., Ho, Cheuk Hin, Baldwin, William J., Sachs, Matthias, Kermode, James, Bernstein, Noam, Csányi, Gábor, Ortner, Christoph
We introduce ACEpotentials.jl, a Julia-language software package that constructs interatomic potentials from quantum mechanical reference data using the Atomic Cluster Expansion (Drautz, 2019). As the latter provides a complete description of atomic
Externí odkaz:
http://arxiv.org/abs/2309.03161
Autor:
Darby, James P., Kovács, Dávid P., Batatia, Ilyes, Caro, Miguel A., Hart, Gus L. W., Ortner, Christoph, Csányi, Gábor
Density based representations of atomic environments that are invariant under Euclidean symmetries have become a widely used tool in the machine learning of interatomic potentials, broader data-driven atomistic modelling and the visualisation and ana
Externí odkaz:
http://arxiv.org/abs/2210.01705
Many atomic descriptors are currently limited by their unfavourable scaling with the number of chemical elements $S$ e.g. the length of body-ordered descriptors, such as the Smooth Overlap of Atomic Positions (SOAP) power spectrum (3-body) and the At
Externí odkaz:
http://arxiv.org/abs/2112.13055
Autor:
Xu, Yizhi, Marrett, Joseph M, Titi, Hatem M, Darby, James P, Morris, Andrew J, Friščić, Tomislav, Arhangelskis, Mihails
Publikováno v:
Journal of the American Chemical Society. 145:3515-3525
Funder: Canada Research Chairs
Funder: Leverhulme Trust
Funder: University of Birmingham
First-principles crystal structure prediction (CSP) is the most powerful approach for materials discovery, enabling the prediction and evaluation
Funder: Leverhulme Trust
Funder: University of Birmingham
First-principles crystal structure prediction (CSP) is the most powerful approach for materials discovery, enabling the prediction and evaluation
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
He, Sailing, Vivien, Laurent, Liboiron-Ladouceur, Odile, Gostimirovic, Dusan, Xu, Dan-Xia, Grinberg, Yuri, Xun, Chenxin, Darby, James, Zhao, Bokun
Publikováno v:
Proceedings of SPIE; March 2024, Vol. 12890 Issue: 1 p128900A-128900A-4, 1160105p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.