Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Dante Carrasco-Olivera"'
Autor:
Hubert Rohner Pickmann Soto, Susana Arela Pérez, Juan Carlos Egaña Arancibia, Dante Carrasco Olivera
Publikováno v:
Proyecciones (Antofagasta) v.39 n.5 2020
SciELO Chile
CONICYT Chile
instacron:CONICYT
SciELO Chile
CONICYT Chile
instacron:CONICYT
We consider two inverse eigenproblems for a real symmetric doubly arrowhead matrix A n (q) , which consist of constructing A n (q) from two special kinds of spectra information. These problems were introduced in [11], where the principal results are
Autor:
Hubert Rohner Pickmann Soto, Dante Carrasco Olivera, Juan Carlos Egaña Arancibia, Susana Arela Pérez
Publikováno v:
Proyecciones (Antofagasta) v.38 n.4 2019
SciELO Chile
CONICYT Chile
instacron:CONICYT
Proyecciones (Antofagasta), Volume: 38, Issue: 4, Pages: 811-828, Published: DEC 2019
SciELO Chile
CONICYT Chile
instacron:CONICYT
Proyecciones (Antofagasta), Volume: 38, Issue: 4, Pages: 811-828, Published: DEC 2019
We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of th
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
In this work a new type of matrix called circulant-like matrix is introduced. This type of matrix includes the classical k-circulant matrix, introduced in [4] , in a natural sense. Its eigenvalues and its inverse and some other properties are studied
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b099575ace55d487e69dd95ef3058859
Autor:
Dante Carrasco-Olivera, Claudio Vidal
Publikováno v:
Qualitative Theory of Dynamical Systems. 18:383-403
We consider the Hamiltonian function defined by the cubic polynomial H=12(y12+y22)+V(x1,x2) where the potential V(x)=δV2(x1,x2)+V3(x1,x2), with V2(x1,x2)=12(x12+x22) and V3(x1,x2)=13x13+fx1x22+gx23, with f and g are real parameters such that f≠0 a
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 48:649-662
It is well known that the geometric Lorenz attractor is $$\mathcal {K}^*$$ -expansive. In this paper we prove that the Rovella attractor is also $$\mathcal {K}^*$$ -expansive in an almost 2-persistent way.
Publikováno v:
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We consider the Hamiltonian polynomial function H of degree fourth given by either H (x, y, px, py) = ( + ) + (x2 +y2) + V3(x;y) + V4(x,y), or H (x, y, px, py) = (- + ) + (-x2 +y2) + V3 (x, y) + V4 (x, y), where V3 (x, y) and V4 (x, y) are homogeneou
Publikováno v:
Topol. Methods Nonlinear Anal. 55, no. 2 (2020), 533-552
We incorporate the notion of a distal system into the continuum theory \cite{n} through the notion of the {\em continuum-wise distal homeomorphism}. Results concerning distal homeomorphisms will be generalized to the case of cw-distal homeomorphisms.
In this paper we study the polynomial entropy of homeomorphism on compact metric space. We construct a homeomorphism on a compact metric space with vanishing polynomial entropy that it is not equicontinuous. Also we give examples with arbitrarily sma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44f55710e7638613f369931a11a1c57d
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 20:3461-3474
In this paper we define and study the topological entropy of a set-valued dynamical system. Actually, we obtain two entropies based on separated and spanning sets. Some properties of these entropies resembling the single-valued case will be obtained.
Publikováno v:
Journal Of Differential Equations
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
The geometric Lorenz attractor is an attractor set constructed in such a way that it satisfies the main qualitative properties evidenced on the Lorenz system equations, particularly the fact that this attractor is a robustly transitive set. In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dbe6c466638020fb7bcc03617d437ee3