Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Danilov, L. I."'
Autor:
Danilov, L. I.
We prove that in a Sobolev space $H^s_{\Lambda }({\mathbb R}^2;{\mathbb R})$, $s > 0$, of periodic functions with a given period lattice $\Lambda $, there exists a dense $G_{\delta }$-set ${\mathcal O}$ such that the spectrum of the Landau Hamiltonia
Externí odkaz:
http://arxiv.org/abs/2412.09212
Autor:
Danilov, L. I.
Publikováno v:
Theoret. and Math. Phys. 124 (2000), no.1, 859-871
The absolute continuity of the spectrum for the periodic Dirac operator $$ \hat D=\sum_{j=1}^n(-i\frac {\partial}{\partial x_j}-A_j)\hat \alpha_j + \hat V^{(0)}+\hat V^{(1)}, x\in R^n, n\geq 3, $$ is proved given that either $A\in C(R^n;R^n)\cap H^q_
Externí odkaz:
http://arxiv.org/abs/0905.4622
Autor:
Danilov, L. I.
Publikováno v:
J. Phys. A: Math. Theor. 42 (2009) 275204
We consider the Schr\"odinger operator in ${\mathbb R}^n$, $n\geq 3$, with the electric potential $V$ and the magnetic potential $A$ being periodic functions (with a common period lattice) and prove absolute continuity of the spectrum of the operator
Externí odkaz:
http://arxiv.org/abs/0902.3371
Autor:
Danilov, L. I.
In this paper, for d > 2, we prove the absolute continuity of the spectrum of a d-dimensional periodic Dirac operator with some discontinuous magnetic and electric potentials. In particular, for d = 3, electric potentials from Zygmund classes $L^3\ln
Externí odkaz:
http://arxiv.org/abs/0805.0399
Autor:
Danilov, L. I.
Publikováno v:
Izv. Inst. Mat. i Informat. Udm. Univ., vyp. 3 (37), 2006, pp. 27 - 28
In this work we present some results on existence of Weyl almost periodic selections of multivalued maps taking values in a complete metric space.
Comment: 3 pages, LaTeX. Presented at the Conference: "Control Theory and Mathematical Modelling",
Comment: 3 pages, LaTeX. Presented at the Conference: "Control Theory and Mathematical Modelling",
Externí odkaz:
http://arxiv.org/abs/math/0703630
Autor:
Danilov, L. I.
Publikováno v:
St. Petersburg Math. J., Vol. 17 (2006), No. 3, Pages 409-433
A generalized two-dimensional periodic Dirac operator is considered, with $L^{\infty}$-matrix-valued coefficients of the first order derivatives and with complex matrix-valued potential. It is proved that if the matrix-valued potential has zero bound
Externí odkaz:
http://arxiv.org/abs/math-ph/0703029
Autor:
Danilov, L. I.
We prove that Besicovitch almost periodic multivalued maps ${\bf R}\ni t \to F(t) \in cl U$ have Besicovitch almost periodic selections, where $cl U$ is the collection of non-empty closed sets of a complete metric space $U$.
Comment: 23 pages, L
Comment: 23 pages, L
Externí odkaz:
http://arxiv.org/abs/math/0503293
Autor:
Danilov, L. I.
We prove that equi-Weyl almost periodic multivalued maps $R \ni t \to F(t)\in cl U$ have equi-Weyl almost periodic selections, where $cl U$ is the collection of non-empty closed sets of a complete metric space $U$.
Comment: 23 pages, LaTeX2e; so
Comment: 23 pages, LaTeX2e; so
Externí odkaz:
http://arxiv.org/abs/math/0310010
Autor:
Danilov, L. I.1 (AUTHOR) lidanilov@mail.ru
Publikováno v:
Mathematical Notes. Sep2021, Vol. 110 Issue 3/4, p497-510. 14p.
Autor:
Danilov, L. I.1 (AUTHOR) danilov@udman.ru
Publikováno v:
Theoretical & Mathematical Physics. Jan2020, Vol. 202 Issue 1, p41-57. 17p.