Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Daniele Prada"'
Publikováno v:
Computers & Mathematics with Applications. 116:25-47
We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose fu
Autor:
Silvia Bertoluzza, Giovanna Guidoboni, Romain Hild, Daniele Prada, Christophe Prud’homme, Riccardo Sacco, Lorenzo Sala, Marcela Szopos
Publikováno v:
Journal of Scientific Computing
Journal of Scientific Computing, 2023, 95 (1), pp.6. ⟨10.1007/s10915-023-02109-5⟩
Journal of Scientific Computing, 2023, 95 (1), pp.6. ⟨10.1007/s10915-023-02109-5⟩
International audience; In this paper, we address the study of elliptic boundary value problems in presence of a boundary condition of integral type (IBC) where the potential is an unknown constant and the flux (the integral of the flux density) over
Publikováno v:
Mathematical Models and Methods in Applied Sciences
We introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree $p$. In the setting of [S. Bertoluzza and D. Prada, A poly
Publikováno v:
Journal of Computational Physics. 466:111379
Autor:
Daniele Prada, Silvia Bertoluzza
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
Modélisation mathématique et analyse numérique (Impr.) 55 (2021): S785–S810. doi:10.1051/m2an/2020059
info:cnr-pdr/source/autori:S. Bertoluzza and D. Prada/titolo:A polygonal discontinuous Galerkin method with minus one stabilisation/doi:10.1051%2Fm2an%2F2020059/rivista:Modélisation mathématique et analyse numérique (Impr.)/anno:2021/pagina_da:S785/pagina_a:S810/intervallo_pagine:S785–S810/volume:55
Modélisation mathématique et analyse numérique (Impr.) 55 (2021): S785–S810. doi:10.1051/m2an/2020059
info:cnr-pdr/source/autori:S. Bertoluzza and D. Prada/titolo:A polygonal discontinuous Galerkin method with minus one stabilisation/doi:10.1051%2Fm2an%2F2020059/rivista:Modélisation mathématique et analyse numérique (Impr.)/anno:2021/pagina_da:S785/pagina_a:S810/intervallo_pagine:S785–S810/volume:55
We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K)
Publikováno v:
Calcolo (Online) 57 (2020): 39. doi:10.1007/s10092-020-00388-0
info:cnr-pdr/source/autori:P.F. Antonietti, S. Bertoluzza, D. Prada, and M. Verani/titolo:The virtual element method for a minimal surface problem/doi:10.1007%2Fs10092-020-00388-0/rivista:Calcolo (Online)/anno:2020/pagina_da:39/pagina_a:/intervallo_pagine:39/volume:57
info:cnr-pdr/source/autori:P.F. Antonietti, S. Bertoluzza, D. Prada, and M. Verani/titolo:The virtual element method for a minimal surface problem/doi:10.1007%2Fs10092-020-00388-0/rivista:Calcolo (Online)/anno:2020/pagina_da:39/pagina_a:/intervallo_pagine:39/volume:57
In this paper we consider the Virtual Element discretization of a minimal surface problem, a quasi-linear elliptic partial differential equation modeling the problem of minimizing the area of a surface subject to a prescribed boundary condition. We d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d6d803571636dca7561b1ce6d2f138a6
http://hdl.handle.net/11311/1164669
http://hdl.handle.net/11311/1164669
Publikováno v:
SIAM journal on numerical analysis
58 (2020): 1556–1591. doi:10.1137/18M1233303
info:cnr-pdr/source/autori:S. Bertoluzza, M. Pennacchio, and D. Prada/titolo:FETI-DP for the Three Dimensional Virtual Element Method/doi:10.1137%2F18M1233303/rivista:SIAM journal on numerical analysis (Print)/anno:2020/pagina_da:1556/pagina_a:1591/intervallo_pagine:1556–1591/volume:58
SIAM Journal on Numerical Analysis
58 (2020): 1556–1591. doi:10.1137/18M1233303
info:cnr-pdr/source/autori:S. Bertoluzza, M. Pennacchio, and D. Prada/titolo:FETI-DP for the Three Dimensional Virtual Element Method/doi:10.1137%2F18M1233303/rivista:SIAM journal on numerical analysis (Print)/anno:2020/pagina_da:1556/pagina_a:1591/intervallo_pagine:1556–1591/volume:58
SIAM Journal on Numerical Analysis
We deal with the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioner for elliptic problems discretized by the virtual element method (VEM). We extend the result of [22] to the three dimensional case. We prove polylogarithm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71d43728bc4a862dd1776bc0c4a5fc9c
https://publications.cnr.it/doc/422768
https://publications.cnr.it/doc/422768
Autor:
Alon Harris, Lauren Saint, Alice Chandra Verticchio Vercellin, Josh C Gross, Brent Siesky, Daniele Prada, Giovanna Guidoboni
Publikováno v:
Intraocular and Intracranial Pressure Gradient in Glaucoma ISBN: 9789811321368
Advancements in imaging technologies over the past several decades have allowed for the identification of non-intraocular pressure (IOP) processes involved in glaucomatous optic neuropathy. Perhaps the most commonly cited non-IOP risk factors are imp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3555e8eddf0491a101bc3a230488d386
https://doi.org/10.1007/978-981-13-2137-5_33
https://doi.org/10.1007/978-981-13-2137-5_33
Autor:
Daniele Prada, Josh C Gross
Publikováno v:
Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques,and Mathematical Modeling, edited by Giovanna Guidoboni, Alon Harris, Riccardo Sacco, pp. 71–99. Basel: Springer Nature Switzerland, 2019
info:cnr-pdr/source/autori:J. Gross and D. Prada/titolo:Measurement of geometrical and functional parameters related to ocular blood flow/titolo_volume:Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques,and Mathematical Modeling/curatori_volume:Giovanna Guidoboni, Alon Harris, Riccardo Sacco/editore: /anno:2019
Ocular Fluid Dynamics ISBN: 9783030258856
info:cnr-pdr/source/autori:J. Gross and D. Prada/titolo:Measurement of geometrical and functional parameters related to ocular blood flow/titolo_volume:Ocular Fluid Dynamics: Anatomy, Physiology, Imaging Techniques,and Mathematical Modeling/curatori_volume:Giovanna Guidoboni, Alon Harris, Riccardo Sacco/editore: /anno:2019
Ocular Fluid Dynamics ISBN: 9783030258856
This chapter examines the assessment of ocular hemodynamics in health and disease. Beginning with a discussion on ocular perfusion pressure and the physical principles, we systematically present the conceptual basis and details of blood flow measurem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e7ec25540453502c427e526dc73896b
http://www.cnr.it/prodotto/i/415497
http://www.cnr.it/prodotto/i/415497
Publikováno v:
Numerical Mathematics and Advanced Applications ENUMATH 2017
ENUMATH 2017, pp. 157–164, Voss, Norway, 25-29 September 2017
info:cnr-pdr/source/autori:D. Prada, S. Bertoluzza, M. Pennacchio, and M. Livesu/congresso_nome:ENUMATH 2017/congresso_luogo:Voss, Norway/congresso_data:25-29 September 2017/anno:2019/pagina_da:157/pagina_a:164/intervallo_pagine:157–164
Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
Lecture Notes in Computational Science and Engineering
Lecture Notes in Computational Science and Engineering-Numerical Mathematics and Advanced Applications ENUMATH 2017
ENUMATH 2017, pp. 157–164, Voss, Norway, 25-29 September 2017
info:cnr-pdr/source/autori:D. Prada, S. Bertoluzza, M. Pennacchio, and M. Livesu/congresso_nome:ENUMATH 2017/congresso_luogo:Voss, Norway/congresso_data:25-29 September 2017/anno:2019/pagina_da:157/pagina_a:164/intervallo_pagine:157–164
Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
Lecture Notes in Computational Science and Engineering
Lecture Notes in Computational Science and Engineering-Numerical Mathematics and Advanced Applications ENUMATH 2017
We analyze the performance of a state-of-the-art domain decomposition approach, the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) method (Toselli and Widlund, Domain decomposition methods--algorithms and theory. Springer series in