Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Daniele Nemmi"'
Autor:
Andrea Lucchini, Daniele Nemmi
Publikováno v:
Transactions on Combinatorics, Vol 9, Iss 2, Pp 111-114 (2020)
We prove that the graph obtained from the non-nilpotent graph of a finite group by deleting the isolated vertices is connected with diameter at most 3. This bound is the best possible.
Externí odkaz:
https://doaj.org/article/b36fe486b0d04fc8b7d6e217e5b260b9
Publikováno v:
Burness, T, Lucchini, A & Nemmi, D 2023, ' On the soluble graph of a finite group ', Journal of Combinatorial Theory, Series A, vol. 194, 105708 . https://doi.org/10.1016/j.jcta.2022.105708
Let $G$ be a finite insoluble group with soluble radical $R(G)$. In this paper we investigate the soluble graph of $G$, which is a natural generalisation of the widely studied commuting graph. Here the vertices are the elements in $G \setminus R(G)$,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42ef9ee3fbac6f3f688a333dd8c41eee
https://hdl.handle.net/11577/3467933
https://hdl.handle.net/11577/3467933
Autor:
Andrea Lucchini, Daniele Nemmi
Publikováno v:
Mathematische Nachrichten. 294:1912-1921
Autor:
Andrea Lucchini, Daniele Nemmi
Given a class [Formula: see text] of finite groups, we consider the graph [Formula: see text] whose vertices are the elements of [Formula: see text] and where two vertices [Formula: see text] are adjacent if and only if [Formula: see text]. Moreover,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::412f51d758c88b8bfc6ca5ee2f928144
https://hdl.handle.net/11577/3473365
https://hdl.handle.net/11577/3473365
For a finite group G, we investigate the directed graph Γ ( G ) {\Gamma(G)} , whose vertices are the non-hypercentral elements of G and where there is an edge x ↦ y {x\mapsto y} if and only if [ x , n y ] = 1 {[x,_{n}y]=1} for some n ∈ ℕ {
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::005f7d739542191d3a1ec4f87d4b70de
Autor:
Andrea Lucchini, Daniele Nemmi
Given a 2-generated finite group G, the non-generating graph of G has as vertices the elements of G and two vertices are adjacent if and only if they are distinct and do not generate G. We consider the graph $$\Sigma (G)$$ Σ ( G ) obtained from the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::594dfce3312c88327b5be55e9c81cf8b
http://hdl.handle.net/11577/3454667
http://hdl.handle.net/11577/3454667
Autor:
Andrea Lucchini, Daniele Nemmi
Let $G$ be a $2$-generated group. The generating graph $\Gamma(G)$ is the graph whose vertices are the elements of $G$ and where two vertices $g_1$ and $g_2$ are adjacent if $G = \langle g_1, g_2 \rangle.$ This graph encodes the combinatorial structu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac9e6c4ee284c9edd150f3cfe5b3f5cf