Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Daniele Morbidelli"'
Autor:
Giancarlo Sciddurlo, Antonio Petrosino, Mattia Quadrini, Cesare Roseti, Domenico Striccoli, Francesco Zampognaro, Michele Luglio, Stefano Perticaroli, Antonio Mosca, Francesco Lombardi, Ivan Micheli, Antonio Ornatelli, Vincenzo Schena, Alessandro Di Mezza, Alessio Mattioni, Daniele Morbidelli, Gennaro Boggia, Giuseppe Piro
Publikováno v:
IEEE Internet of Things Journal. 9:14952-14964
In $\mathbb{R}^3$ we consider the vector fields \[ X_1 =\frac{ \partial }{\partial x},\qquad X_2 =\frac{ \partial }{\partial y}+ |x|^\alpha \frac{ \partial }{\partial z}, \] where $\alpha\in\left[1,+\infty\right[$. Let $\mathbb{R}^3_+ =\{(x,y,z)\in\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e376db5540beb73a7664c897480717e
http://hdl.handle.net/11585/813916
http://hdl.handle.net/11585/813916
We analyze some properties of a class of multiexponential maps appearing naturally in the geometric analysis of Carnot groups. We will see that such maps can be useful in at least two interesting problems. First, in relation to the analysis of some r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16dfcc35e32bc079168e47c882801d6a
Autor:
Daniele Morbidelli
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 64, no. 2 (2020), 391-421
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Publ. Mat. 64, no. 2 (2020), 391-421
In the setting of step two Carnot groups, we show a "cone property" for horizontally convex sets. Namely we prove that, given a horizontally convex set $C$, a pair of points $P\in \partial C$ and $Q\in $ int $C$, both belonging to a horizontal line $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::500a030362f4b084e4b3c673b9979ab7
http://arxiv.org/abs/1808.06513
http://arxiv.org/abs/1808.06513
Autor:
Daniele Morbidelli, Roberto Monti
Given the pair of vector fields $X=\partial_x+|z|^{2m}y\partial_t$ and $ Y=\partial_y-|z|^{2m}x \partial_t,$ where $(x,y,t)= (z,t)\in\mathbb{R}^3=\mathbb{C}\times\mathbb{R}$, we give a condition on a bounded domain $\Omega\subset\mathbb{R}^3$ which e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4443bc9f94fffe0484219286c95233a
http://arxiv.org/abs/1805.06791
http://arxiv.org/abs/1805.06791
Publikováno v:
Journal of Mathematical Analysis and Applications. 399:692-700
We prove a Frobenius-type theorem for singular distributions generated by a family of locally Lipschitz continuous vector fields satisfying almost everywhere a quantitative finite type condition.
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 195:445-458
We prove a quantitative openness theorem for $C^1$ submersions under suitable assumptions on the differential. We then apply our result to a class of exponential maps appearing in Carnot-Carath\'eodory spaces and we improve a classical completeness r
We characterize the subRiemannian cut locus of the origin in the free Carnot group of step two with three generators. We also calculate explicitly the cut time of any extremal path and the distance from the origin of all points of the cut locus. Fina
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3fde4e8b7ea47a42022cc73915937664
http://hdl.handle.net/11585/614542
http://hdl.handle.net/11585/614542
Autor:
Maria Manfredini, Giovanna Citti, Andrea Bonfiglioli, Daniele Morbidelli, Giovanni Cupini, Andrea Pascucci, Sergio Polidoro, Francesco Uguzzoni, Annamaria Montanari
Publikováno v:
Geometric Methods in PDE’s ISBN: 9783319026657
In this survey we consider a general Hormander type operator, represented as a sum of squares of vector fields plus a drift and we outline the central role of the fundamental solution in developing Potential and Regularity Theory for solutions of rel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52fabdee158f20e63885e884e4198e9e
https://hdl.handle.net/11380/1075305
https://hdl.handle.net/11380/1075305
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 99(4):375-394
We consider a family of $C^1$ vector fields satisfying a suitable higher order involutivity condition. We discuss the definition of commutators, the regularity of Sussmann's orbits and the Poincar\'e inequality.
Comment: Added Section 5
Comment: Added Section 5