Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Daniele Del Santo"'
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 1, Pp 1-33 (2023)
In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($ {\rm{Ma}} $, $ {\rm{Ro}} $ and $ {\rm{Fr}} $, respectivel
Externí odkaz:
https://doaj.org/article/e1755888fab04532898658de7a839d20
In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($\rm Ma$, $\rm Ro$ and $\rm Fr$, respectively). The focus h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4f3eb430f4fb74e532782baa28bea08
https://hdl.handle.net/11368/2995911
https://hdl.handle.net/11368/2995911
Autor:
Martino Prizzi, Daniele Del Santo
We prove uniqueness for backward parabolic equations whose coefficients are Osgood continuous in time for $t>0$ but not at $t=0$.
16 pages
16 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cffb2c2cee62dc715b0d5ec3a2b7877b
http://hdl.handle.net/11368/2988315
http://hdl.handle.net/11368/2988315
Publikováno v:
Springer INdAM Series ISBN: 9783030613457
In this note we prove a well-posedness result, without loss of derivatives, for strictly hyperbolic wave operators having coefficients which are Zygmund-continuous in the time variable and Lipschitz-continuous in the space variables. The proof is bas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e26405f1229db81240c5fd9732d5afc4
http://hdl.handle.net/11368/2981327
http://hdl.handle.net/11368/2981327
Publikováno v:
Journal of Nonlinear Science
Journal of Nonlinear Science, Springer Verlag, 2021, 31 (1)
Journal of Nonlinear Science, Springer Verlag, 2021, 31 (1)
In the present paper, we study the combined incompressible and fast rotation limits for the full Navier-Stokes-Fourier system with Coriolis, centrifugal and gravitational forces, in the regime of small Mach, Froude and Rossby numbers and for general
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ebfb4d78be8f3e1b915e749171e46ada
https://hdl.handle.net/11368/2963922
https://hdl.handle.net/11368/2963922
Publikováno v:
Springer INdAM Series ISBN: 9783030613457
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::84ac3d6b3e69539fa017fb7451bf306f
https://doi.org/10.1007/978-3-030-61346-4
https://doi.org/10.1007/978-3-030-61346-4
Autor:
Daniele Del Santo, Martino Prizzi
We prove some $C^\infty$ and Gevrey well-posedness results for hyperbolic equations whose coefficients lose regularity at one point.
Comment: 11 pages; revised version
Comment: 11 pages; revised version
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::214ea217043e7791cfc37dbbb7198735
The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop'Anomalies in Partial Differential Equations'held in September 2019 at the Istituto Nazionale
We prove continuous dependence on initial data for a backward parabolic operator whose leading coefficients are Osgodd continuous in time. This result fills the gap between uniqueness and continuity results obtained so far.
Comment: 32 pages. ar
Comment: 32 pages. ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f76336714194c5eed40968c124565597
Publikováno v:
Trends in Mathematics ISBN: 9783030044589
The interest of the scientific community for the existence, uniqueness and stability of solutions to PDE's is testified by the numerous works available in the literature. In particular, in some recent publications on the subject an inequality guarant
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ddf9587dfcc93f7c28506e5be3fa6b2
https://hdl.handle.net/11368/2932607
https://hdl.handle.net/11368/2932607