Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Daniele A. Di Pietro"'
Publikováno v:
Results in Applied Mathematics, Vol 23, Iss , Pp 100496- (2024)
In this paper we prove Poincaré inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain Ω of R3. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the P
Externí odkaz:
https://doaj.org/article/0119a9f39d0443d8a5bd781a8e1eba43
Autor:
Daniele A. Di Pietro, Jérôme Droniou
Publikováno v:
Computers & Mathematics with Applications. 125:136-149
Publikováno v:
Calcolo. 60
In this work we prove that, for a general polyhedral domain of $$\mathbb {R}^3$$ R 3 , the cohomology spaces of the discrete de Rham complex of Di Pietro and Droniou (Found Comput Math 23:85–164, 2023, https://doi.org/10.1007/s10208-021-09542-8) ar
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (5), pp.2045-2073. ⟨10.1051/m2an/2021051⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (5), pp.2045-2073. ⟨10.1051/m2an/2021051⟩
In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including
Publikováno v:
Numerical Linear Algebra with Applications. 30
In a recent work (Castanon Quiroz & Di Pietro (2020) A hybrid high-order method for the incompressible Navier–Stokes problem robust for large irrotational body forces. Comput. Math. Appl., 79, 2655–2677), we have introduced a pressure-robust hybr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cd36b1e9583149d6c61e322ac5fe5238
http://arxiv.org/abs/2203.07180
http://arxiv.org/abs/2203.07180
This paper contains two major contributions. First we derive, following the discrete de Rham (DDR) and Virtual Element (VEM) paradigms, pressure-robust methods for the Stokes equations that support arbitrary orders and polyhedral meshes. Unlike other
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56dc5258aed3d03f7995be6bed4f45f4
http://hdl.handle.net/10281/394879
http://hdl.handle.net/10281/394879
In this work, we design and analyze a Hybrid High-Order (HHO) discretization method for incompressible flows of non-Newtonian fluids with power-like convective behaviour. We work under general assumptions on the viscosity and convection laws, that ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::035c7df0edbb48794fd97a4f55ba68b5
https://hal.archives-ouvertes.fr/hal-03273118v2/document
https://hal.archives-ouvertes.fr/hal-03273118v2/document
Publikováno v:
Computational Methods in Applied Mathematics. 20:227-249
In this work, we construct and analyze a nonconforming high-order discretization method for the quasi-static single-phase nonlinear poroelasticity problem describing Darcean flow in a deformable porous medium saturated by a slightly compressible flui
We address the numerical solution of linear systems arising from the hybrid discretizations of second-order elliptic partial differential equations (PDEs). Such discretizations hinge on a hybrid set of degrees of freedom (DoFs), respectively defined
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cec536e6601cee5d14543d27a111ff07
https://hal.archives-ouvertes.fr/hal-03272468/file/AMG_for_hybrid_methods.pdf
https://hal.archives-ouvertes.fr/hal-03272468/file/AMG_for_hybrid_methods.pdf