Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Daniela Lagomarsino"'
Autor:
Silvia Bianchini, Federico Raspini, Andrea Ciampalini, Daniela Lagomarsino, Marco Bianchi, Fernando Bellotti, Nicola Casagli
Publikováno v:
Geomatics, Natural Hazards & Risk, Vol 8, Iss 2, Pp 225-241 (2017)
Landslide detection and mapping are essential issues for reducing impact of such natural disasters, and for improving the future built-up expansion and planning strategies, especially in developing countries where a reasonable land-use design is an i
Externí odkaz:
https://doaj.org/article/f7de505d359a4af49b835e03e0497c49
Autor:
Daniela Lagomarsino, Matteo Fornari, Chiara Barbieri, Tommaso Ciccarone, Alessandro Lomartire, Emilio Norelli, Dario Rosa
Publikováno v:
Day 1 Mon, March 21, 2022.
The exploiting of High Resolution (HR) Pre Stack Depth Migration (PSDM) 3D seismic volumes, normally used for Oil & Gas exploration, has been pushed forward in geomorphological and geohazard risk evaluation. The novel approach proposed here allows to
Autor:
Danilo Godone, Martina Cignetti, Paolo Allasia, A. Pozzoli, Francesco Bucci, Michele Santangelo, E. Norelli, Daniela Lagomarsino, Daniele Giordan, Francesca Ardizzone, Mauro Cardinali, D. Notti, Federica Fiorucci
Publikováno v:
Journal of Maps, Vol 17, Iss 2, Pp 376-388 (2021)
Journal of maps 17 (2021): 376–388. doi:10.1080/17445647.2021.1943552
info:cnr-pdr/source/autori:Bucci F.; Santangelo M.; Fiorucci F.; Ardizzone F.; Giordan D.; Cignetti M.; Notti D.; Allasia P.; Godone D.; Lagomarsino D.; Pozzoli A.; Norelli E.; Cardinali M./titolo:Geomorphologic landslide inventory by air photo interpretation of the High Agri Valley (Southern Italy)/doi:10.1080%2F17445647.2021.1943552/rivista:Journal of maps/anno:2021/pagina_da:376/pagina_a:388/intervallo_pagine:376–388/volume:17
Journal of maps 17 (2021): 376–388. doi:10.1080/17445647.2021.1943552
info:cnr-pdr/source/autori:Bucci F.; Santangelo M.; Fiorucci F.; Ardizzone F.; Giordan D.; Cignetti M.; Notti D.; Allasia P.; Godone D.; Lagomarsino D.; Pozzoli A.; Norelli E.; Cardinali M./titolo:Geomorphologic landslide inventory by air photo interpretation of the High Agri Valley (Southern Italy)/doi:10.1080%2F17445647.2021.1943552/rivista:Journal of maps/anno:2021/pagina_da:376/pagina_a:388/intervallo_pagine:376–388/volume:17
Landslide inventories provide the knowledge basis for many geomorphological applications and also planning and emergency management. Detailed landslide inventories should also be prepared where pre-existing inventories are available, as knowledge upd
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d42fb755603a73436b81253abc54cc1f
Publikováno v:
Natural Hazards and Earth System Sciences, Vol 18, Pp 807-812 (2018)
We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial
Autor:
Alessandro Battistini, Ascanio Rosi, Samuele Segoni, Daniela Lagomarsino, Nicola Casagli, Filippo Catani
Publikováno v:
Applied Geography. 82:59-65
The objective of this work is twofold: (i) automatically setting up a landslide inventory using a state-of-the art semantic engine based on data mining on online news and (ii) evaluating if the automatically generated inventory can be used to validat
Publikováno v:
Environmental Modeling & Assessment. 22:201-214
Classification and regression problems are a central issue in geosciences. In this paper, we present Classification and Regression Treebagger (ClaReT), a tool for classification and regression based on the random forest (RF) technique. ClaReT is deve
Autor:
Sandro Moretti, Daniela Lagomarsino, Samuele Segoni, Nicola Casagli, Filippo Catani, Guglielmo Rossi, Alessandro Battistini, Ascanio Rosi
Publikováno v:
Natural Hazards and Earth System Sciences, Vol 15, Iss 4, Pp 853-861 (2015)
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f1ffcaf779d6d0ecb325489b19277419
https://www.nat-hazards-earth-syst-sci.net/15/853/2015/
https://www.nat-hazards-earth-syst-sci.net/15/853/2015/
Publikováno v:
Hydrology and Earth System Sciences, Vol 17, Iss 3, Pp 1229-1240 (2013)
We propose a simple snow accumulation-melting model (SAMM) to be applied at the regional scale in conjunction with landslide warning systems based on empirical rainfall thresholds. SAMM follows an intermediate approach between physically based models
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3316e7d294e86f28a75e25bf3105770c
https://www.hydrol-earth-syst-sci.net/17/1229/2013/
https://www.hydrol-earth-syst-sci.net/17/1229/2013/
We improved a state-of-art RSLEWS (regional scale landslide early warning system) based on rainfall thresholds by integrating punctual soil moisture estimates. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::facff3ad042b9cdafb9dce55af2f7e38
https://doi.org/10.5194/nhess-2017-361
https://doi.org/10.5194/nhess-2017-361
Publikováno v:
Advancing Culture of Living with Landslides ISBN: 9783319534978
Landslide susceptibility maps (LSM) are frequently used by local authorities for land-use management and planning activities. They are valuable tools used by decision makers for urban and infrastructural plans and for civil protection purposes. False
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::20cbf572f951d9fa04cea4f771c06cf2
https://doi.org/10.1007/978-3-319-53498-5_109
https://doi.org/10.1007/978-3-319-53498-5_109