Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Daniela A. Ridel"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Forecasting long-term human motion is a challenging task due to the non-linearity, multi-modality and inherent uncertainty in future trajectories. The underlying scene and past motion of agents can provide useful cues to predict their future motion.
Autor:
Daniela Alves Ridel
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Predicting long-term human motion is challenging due to the non-linearity, multi-modality, and inherent uncertainty in future trajectories. Such type of prediction is important to ensure safety in the context of self-driving vehicles, especially when
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1e2bd417261518bdf100622f518af37
https://doi.org/10.11606/t.55.2021.tde-08112021-112852
https://doi.org/10.11606/t.55.2021.tde-08112021-112852
Publikováno v:
2019 IEEE Intelligent Vehicles Symposium (IV).
Pedestrians and vehicles often share the road in complex inner city traffic. This leads to interactions between the vehicle and pedestrians, with each affecting the other's motion. In order to create robust methods to reason about pedestrian behavior
Publikováno v:
ITSC
The ability to anticipate pedestrian actions on streets is a safety issue for intelligent cars and has increasingly drawn the attention of the automotive industry. Estimating when pedestrians will cross streets has proved a challenging task, since th
Publikováno v:
LARS/SBR
Obstacle detection and tracking is a fundamental task for several Advanced Driver Assistance Systems (ADAS) and self-driving cars. Several approaches have been presented in the literature in the last years and many of them are based on visual sensors
Autor:
Tiago C. dos Santos, Marcos Paulo Batista, Francisco A.R. Alencar, Alberto Yukinobu Hata, Daniela A. Ridel, Luis Alberto Rosero, Carlos M. Massera, Fernando Santos Osório, Patrick Y. Shinzato, Denis F. Wolf
Publikováno v:
ITSC
Road traffic crashes are the leading cause of death among young people between 10 and 24 years old. In recent years, both academia and industry have been devoted towards the development of Driver Assistance Systems (DAS) and Autonomous Vehicles (AV)
Autor:
Daniela Alves Ridel
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
Segundo relatório disponibilizado pela World Health Organization (WHO) (WHO, 2015), 1,3 milhões de pessoas morrem todos os anos no mundo devido à acidentes de trânsito. Veículos inteligentes se mostram como uma proeminente solução para reduzir
Autor:
Daniela Alves Ridel
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Segundo relatório disponibilizado pela World Health Organization (WHO) (WHO, 2015), 1,3 milhões de pessoas morrem todos os anos no mundo devido à acidentes de trânsito. Veículos inteligentes se mostram como uma proeminente solução para reduzir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90a2c663e1e43cce8a8ac78073eaac08
Publikováno v:
2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR).
Tracking can be defined as the problem of estimating the trajectory of an object in image sequence as it moves around a scene. In other words, a tracker assigns consistent labels to the tracked objects in different frames of a video. One of the most
Publikováno v:
2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR).
The detection of obstacles is a fundamental issue in autonomous navigation, as it is the main key for collision prevention. This paper presents a method for the segmentation of general obstacles by stereo vision with no need of dense disparity maps o