Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Daniel Vendrúscolo"'
Autor:
Daniel Vendrúscolo
Publikováno v:
Fixed Point Theory and Applications, Vol 2006 (2006)
We study Nielsen coincidence theory for maps between manifolds of same dimension regardless of orientation. We use the definition of semi-index of a class, review the definition of defective classes, and study the occurrence of defective root classes
Externí odkaz:
https://doaj.org/article/b8895106cf5746d89e1b903fec7756dd
Publikováno v:
Journal of Group Theory.
We say a group 𝐺 has property R ∞ R_{\infty} if the number R ( φ ) R(\varphi) of twisted conjugacy classes is infinite for every automorphism 𝜑 of 𝐺. For such groups, the R ∞ R_{\infty} -nilpotency degree is the least integer 𝑐 s
Autor:
Daniel Vendrúscolo
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Nesse trabalho apresentamos alguns resultados de localização de pontos fixos em poliedros obtidos por Helga Schimer. Abordamos também os mesmos problemas para coincidências, enunciando-os, sempre que possível, para complexos simpliciais e não a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a637e020e098a1569c0a13684102c4b4
https://doi.org/10.11606/d.45.1998.tde-20210729-015930
https://doi.org/10.11606/d.45.1998.tde-20210729-015930
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 24, no. 4 (2017), 613-619
A Nielsen-Borsuk-Ulam number ($NBU(f,\tau)$) is defined for continuous maps $f:X\to Y$ where $X$ and $Y$ are closed orientable triangulable $n$-mani\-folds and $X$ has a free involution $\tau$. This number is a lower bound, in the homotopy class of $
Publikováno v:
Hiroshima Math. J. 46, no. 3 (2016), 255-270
In this article we classify the free involutions of every torus semi-bundle Sol 3-manifold. Moreover, we classify all the triples $M, \tau, \mathbf{R}^n$, where $M$ is as above, $\tau$ is a free involution on $M$, and $n$ is a positive integer, for w
Publikováno v:
Publicationes Mathematicae Debrecen. 78:583-593
Let Sn be the n-dimensional sphere, A : Sn ! Sn the antipodal involution and Rn the n-dimensional euclidean space. The famous Borsuk�Ulam Theorem states that, if f : Sn ! Rn is any continuous map, then there exists a point x 2 Sn such that f(x) = f
Autor:
Daniel Vendrúscolo
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Nesse trabalho demonstramos alguns resultados sobre limitações para o índice de uma classe de Nielsen de coincidência de aplicações entre superfícies. Usando a definição de índice para o caso não orientável mostramos que quando o domínio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b274202abe6ef22049678a8bac807bb
Publikováno v:
Topology and its Applications. (18):3738-3745
This work uses Nielsen coincidence theory to discuss solutions for the geometric Borsuk–Ulam question. It considers triples (X,τ;Y) where X and Y are topological spaces and τ is a free involution on X, (X,τ;Y) satisfies the Borsuk–Ulam theorem
Autor:
Daniel Vendrúscolo
Publikováno v:
Fixed Point Theory and Applications, Vol 2006, Iss 1, p 68513 (2006)
Fixed Point Theory and Applications, Vol 2006 (2006)
Fixed Point Theory and Applications, Vol 2006 (2006)
In this article we studied Nielsen coincidence theory for maps between manifolds of same dimension without hypotheses on orientation. We use the definition of semi-index of a class, we review the definition of defective classes and study the appearan
Publikováno v:
Revista Brasileira de Climatologia, Vol 13, Iss 0 (2014)
No Estado do Rio Grande do Sul (RS) o regime pluviométrico não é homogêneo, apresentando variabilidade espacial e temporal condicionadas às interações de diferentes mecanismos climáticos. Estas particularidades fazem surgir diferentes comport
Externí odkaz:
https://doaj.org/article/b27409bc69824445819564704a1785af