Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Daniel Sparkman"'
Publikováno v:
IEEE Signal Processing Magazine. 39:68-77
Publikováno v:
JOM. 73:3230-3239
This study presents a correlative characterization of internal porosity within a Ti-6Al-4V (Ti64) additively manufactured sample. An x-ray computed tomography (XCT) reconstruction is compared to a mechanical polishing-based serial sectioning (SS) rec
Publikováno v:
Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX.
Recent advances in the development of artificial intelligence and machine learning (AI/ML) techniques have shown great potential for enhancing the modeling and characterization of materials science issues. AI/ML techniques revolutionize big data anal
Autor:
George Em Karniadakis, Khemraj Shukla, James L. Blackshire, Daniel Sparkman, Patricio Clark Di Leoni
We introduce an optimized physics-informed neural network (PINN) trained to solve the problem of identifying and characterizing a surface breaking crack in a metal plate. PINNs are neural networks that can combine data and physics in the learning pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d476ce9ce9bbec253046b0ff8dd69a53
http://arxiv.org/abs/2005.03596
http://arxiv.org/abs/2005.03596
Publikováno v:
Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems. 3
Characterization of barely visible impact damage (BVID) in polymer matrix composites (PMCs) is necessary to use slow crack growth damage tolerance models and evaluate remaining life of PMC components. Azimuthally scanned angled-beam pulse-echo ultras
Publikováno v:
Journal of Nondestructive Evaluation. 39
This paper studies the detection of hidden polymer matrix composite delaminations with a pitch–catch ultrasonic testing system and an agglomerative clustering algorithm. Existing ultrasonic testing methods characterize damage through normal-inciden
Autor:
John C. Aldrin, Mark Flores, Daniel Sparkman, John N. Wertz, Josiah Dierken, David Zainey, Sarah Wallentine, Mike D. Uchic, Norm Schehl, John T. Welter
Publikováno v:
AIP Conference Proceedings.
Autor:
Daniel Sparkman, Josiah Dierken, John N. Wertz, Sarah Wallentine, Sean P. Donegan, David Zainey
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
AIP Conference Proceedings.
Publikováno v:
AIP Conference Proceedings.
The US Air Force seeks to implement damage tolerant lifecycle management of composite structures. Nondestructive characterization of damage is a key input to this framework. One approach to characterization is model-based inversion of the ultrasonic