Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Daniel Massart"'
Publikováno v:
Revista Integración, Vol 40, Iss 1 (2022)
Externí odkaz:
https://doaj.org/article/c4a071b7920942a899893c1d2cb61c0a
Publikováno v:
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2021, 359 (1), pp.65-70. ⟨10.5802/crmath.153⟩
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2021, 359 (1), pp.65-70. ⟨10.5802/crmath.153⟩
We study the quantity $\mbox{KVol}$ defined as the supremum, over all pairs of closed curves, of their algebraic intersection, divided by the product of their lengths, times the area of the surface. The surfaces we consider live in the stratum $\math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfb04fbd1000eccf9289fe62d688d0e2
https://hal.archives-ouvertes.fr/hal-03409993
https://hal.archives-ouvertes.fr/hal-03409993
Publikováno v:
Revista Integración, Volume: 40, Issue: 1, Pages: 25-57, Published: 26 AUG 2022
This paper considers a multi-patch model, where each patch follows a logistic law, and patches are coupled by asymmetrical migration terms. First, in the case of perfect mixing, i.e when the migration rate tends to infinity, the total population foll
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36a11fdb994c15555f27274efcb7fbc3
Autor:
Daniel Massart
Publikováno v:
Surveys in Geometry I
A. Papadopoulos. Surveys in Geometry I, Springer Nature, In press
Surveys in Geometry I ISBN: 9783030866945
HAL
Daniel Massart
A. Papadopoulos. Surveys in Geometry I, Springer Nature, In press
Surveys in Geometry I ISBN: 9783030866945
HAL
Daniel Massart
International audience; We review the different notions about translation surfaces which are necessary to understand McMullen's classification of GL + 2 (R)-orbit closures in genus two. In Section 2 we recall the different definitions of a translatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6837f8b23f250e970fdc5d4c0a1a7bbb
https://hal.archives-ouvertes.fr/hal-03300179/document
https://hal.archives-ouvertes.fr/hal-03300179/document
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2021, 26 (12), pp.6405-6424. ⟨10.3934/dcdsb.2021025⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2021, 26 (12), pp.6405. ⟨10.3934/dcdsb.2021025⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2021, 26 (12), pp.6405-6424. ⟨10.3934/dcdsb.2021025⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2021, 26 (12), pp.6405. ⟨10.3934/dcdsb.2021025⟩
The paper considers a \begin{document}$ n $\end{document}-patch model with migration terms, where each patch follows a logistic law. First, we give some properties of the total equilibrium population. In some particular cases, we determine the condit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::407bb3828c4ac182cb2ea4b6f8fb529c
https://hal.archives-ouvertes.fr/hal-02906124
https://hal.archives-ouvertes.fr/hal-02906124
Autor:
Daniel Massart, Ivan Babenko
Publikováno v:
European Journal of Mathematics
European Journal of Mathematics, Springer, 2017, 3 (4), pp.899-915. 〈10.1007/s40879-017-0181-1〉
European Journal of Mathematics, Springer, 2017, 3 (4), pp.899-915. ⟨10.1007/s40879-017-0181-1⟩
European Journal of Mathematics, Springer, 2017, 3 (4), pp.899-915. 〈10.1007/s40879-017-0181-1〉
European Journal of Mathematics, Springer, 2017, 3 (4), pp.899-915. ⟨10.1007/s40879-017-0181-1⟩
International audience; We define Dirichlet type series associated with homology length spectra of Riemannian, or Finsler, manifolds, or polyhedra, and investigate some of their analytical properties. As a consequence we obtain an inequality analogou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a10ed71e36a500c3b33e4672ac7595e
https://hal.archives-ouvertes.fr/hal-01516391/document
https://hal.archives-ouvertes.fr/hal-01516391/document
Autor:
Daniel Massart, Hugo Parlier
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016, pp.1-35. ⟨10.1093/imrn/rnw086⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2017, pp.rnw086. ⟨10.1093/imrn/rnw086⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016, pp.1-35. ⟨10.1093/imrn/rnw086⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2017, pp.rnw086. ⟨10.1093/imrn/rnw086⟩
International audience; On a surface with a Finsler metric, we investigate the asymptotic growth of the number of closed geodesics of length less than L which minimize length among all geodesic multicurves in the same homology class. An important cla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41bf2601117d0a933becda65ca812147
https://hal.archives-ouvertes.fr/hal-01812140
https://hal.archives-ouvertes.fr/hal-01812140
Autor:
Daniel Massart, Ugo Bessi
Publikováno v:
Communications on Pure and Applied Mathematics. 64:1008-1027
We prove Mane's conjectures [9] in the context of codimension 1 Aubry-Mather theory. © 2011 Wiley Periodicals, Inc.
Autor:
Daniel Massart
Publikováno v:
Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2003, 134, pp.157-171. ⟨10.1007/BF02787406⟩
Israël Journal of Mathematics, Hebrew University Magnes Press, 2003, 134, pp.157-171. ⟨10.1007/BF02787406⟩
We study Lagrangian systems on a closed manifold. We link the differentiability of Mather's beta-function with the topological complexity of the complement of the Aubry set. As a consequence, when the dimension of the manifold is less than or equal t
Autor:
Daniel Massart, Alfonso Sorrentino
Publikováno v:
Nonlinearity
Nonlinearity, IOP Publishing, 2011, 24 (6), pp.1777-1793. ⟨10.1088/0951-7715/24/6/005⟩
Nonlinearity, IOP Publishing, 2011, 24 (6), pp.1777-1793. ⟨10.1088/0951-7715/24/6/005⟩
In this article we study the differentiability of Mather's $\beta$-function on closed surfaces and its relation to the integrability of the system.
Comment: 20 pages, 1 figure. Major revision of the paper
Comment: 20 pages, 1 figure. Major revision of the paper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be95d04647f37cbe502d50a1b80a346e