Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Daniel Lundén"'
Autor:
Fredrik Ronquist, Jan Kudlicka, Viktor Senderov, Johannes Borgström, Nicolas Lartillot, Daniel Lundén, Lawrence Murray, Thomas B. Schön, David Broman
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-10 (2021)
Ronquist, Kudlicka, Senderov and colleagues present universal probabilistic programming as a powerful method for modeling and inference in statistical phylogenetics. They provide an accessible introduction to these techniques and apply them in inferr
Externí odkaz:
https://doaj.org/article/0a808ed6a3994f02bf81be5ca5928f5e
Autor:
Fredrik Ronquist, Jan Kudlicka, Viktor Senderov, Johannes Borgström, Nicolas Lartillot, Daniel Lundén, Lawrence Murray, Thomas B. Schön, David Broman
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-1 (2021)
A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01922-8
Externí odkaz:
https://doaj.org/article/c21a6d10635a4f9dab0d6ca955ad3069
Publikováno v:
Programming Languages and Systems ISBN: 9783031300431
Probabilistic Programming Languages (PPLs) allow users to encode statistical inference problems and automatically apply an inference algorithm to solve them. Popular inference algorithms for PPLs, such as sequential Monte Carlo (SMC) and Markov chain
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de69fe10d0d26dd4f10da88440a0c34c
https://doi.org/10.1007/978-3-031-30044-8_20
https://doi.org/10.1007/978-3-031-30044-8_20
Publikováno v:
Programming Languages and Systems
Programming Languages and Systems ISBN: 9783030993351
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Programming Languages and Systems
Programming Languages and Systems ISBN: 9783030993351
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Programming Languages and Systems
Probabilistic programming languages (PPLs) allow users to encode arbitrary inference problems, and PPL implementations provide general-purpose automatic inference for these problems. However, constructing inference implementations that are efficient
Autor:
Lawrence Murray, Nicolas Lartillot, Fredrik Ronquist, Johannes Borgström, Thomas B. Schön, Daniel Lundén, Viktor Senderov, Jan Kudlicka, David Broman
Publikováno v:
Communications Biology
Communications Biology, Vol 4, Iss 1, Pp 1-1 (2021)
Communications Biology, Vol 4, Iss 1, Pp 1-1 (2021)
Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabi
Publikováno v:
Programming Languages and Systems
Programming Languages and Systems ISBN: 9783030720186
ESOP
Programming Languages and Systems ISBN: 9783030720186
ESOP
Probabilistic programming is an approach to reasoning under uncertainty by encoding inference problems as programs. In order to solve these inference problems, probabilistic programming languages (PPLs) employ different inference algorithms, such as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c45d28274b7e8df0d3d4092d5f1b01bb
http://arxiv.org/abs/2003.05191
http://arxiv.org/abs/2003.05191
Autor:
Nicolas Lartillot, Thomas B. Schön, Johannes Borgström, Lawrence Murray, Daniel Lundén, Fredrik Ronquist, David Broman, Jan Kudlicka, Viktor Senderov
Publikováno v:
Communications Biology
Communications Biology, Nature Publishing Group, 2021, 4 (1), ⟨10.1038/s42003-021-01753-7⟩
Communications Biology, Vol 4, Iss 1, Pp 1-10 (2021)
Communications Biology, 2021, 4 (1), ⟨10.1038/s42003-021-01753-7⟩
Communications Biology, Nature Publishing Group, 2021, 4 (1), ⟨10.1038/s42003-021-01753-7⟩
Communications Biology, Vol 4, Iss 1, Pp 1-10 (2021)
Communications Biology, 2021, 4 (1), ⟨10.1038/s42003-021-01753-7⟩
Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabi