Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Daniel Hundhausen"'
Autor:
Erik Buhmann, Sascha Diefenbacher, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Engin Eren, Frank Gaede, Katja Krüger, Peter McKeown, Lennart Rustige
Publikováno v:
Machine learning: science and technology 3(2), 025014 (2022). doi:10.1088/2632-2153/ac7848
Machine learning: science and technology 3(2), 025014 (2022). doi:10.1088/2632-2153/ac7848
Motivated by the computational limitations of simulating interactions of particles in highly-granular detectors, there exists a concerted effort to build
Motivated by the computational limitations of simulating interactions of particles in highly-granular detectors, there exists a concerted effort to build
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f33195ba3f8b709d205030b6c456ad70
https://bib-pubdb1.desy.de/record/483548
https://bib-pubdb1.desy.de/record/483548
Autor:
Anatolii Korol, Engin Eren, William Korcari, Gregor Kasieczka, Sascha Diefenbacher, Peter McKeown, Erik Buhmann, Lennart Rustige, Frank Gaede, Daniel Hundhausen, Katja Krüger
Publikováno v:
EPJ Web of Conferences, Vol 251, p 03049 (2021)
Generative machine learning models offer a promising way to efficiently amplify classical Monte Carlo generators’ statistics for event simulation and generation in particle physics. Given the already high computational cost of simulation and the ex