Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Daniel C. Weiner"'
Autor:
Brian G. Abbott, David H. Adams, Lishan Aklog, Arvind K. Agnihotri, Louise A. Aquila Allen, Mark S. Allen, Nasser K. Altorki, Robert H. Anderson, Masaki Anraku, Anelechi C. Anyanwu, Simon K. Ashiku, Erle H. Austin, Eric H. Awtry, Emile A. Bacha, Richard Baillott, Donald S. Baim, Leora B. Balsam, Hendrick B. Barner, David J. Barron, Joseph E. Bavaria, David P. Bichell, Edward L. Bove, William J. Brawn, Christian P. Brizard, Julie A. Brothers, Morgan L. Brown, Ayesha S. Bryant, Harold M. Burkhart, Christopher A. Caldarone, Robert M. Califf, Edward Cantu, Justine M. Carr, Joseph P. Carrozza, Frank Cecchin, Robert J. Cerfolio, Riya S. Chacko, Alfred Chahine, Vincent Chan, Frederick Y. Chen, Alvin J. Chin, Cynthia S. Chin, Joanna Chikwe, W. Randolph Chitwood, Karla G. Christian, Neil A. Christie, Joseph C. Cleveland, Lawrence H. Cohn, William E. Cohn, Yolanda L. Colson, Wilson S. Colucci, Andrew C. Cook, Joel D. Cooper, Jack G. Copeland, Scott Cowan, Melissa Culligan, Francois Dagenais, Ralph J. Damiano, Thomas A. D'Amico, Jonathan Daniel, Philippe G. Dartevelle, Tirone E. David, Jonathan D'Cunha, Joseph A. Dearani, Daniel T. DeArmond, Pedro J. del Nido, Tom R. DeMeester, Philippe Demers, Todd L. Demmy, Eric J. Devaney, Elisabeth U. Dexter, Marisa Di Donato, Christopher T. Ducko, Brian W. Duncan, Carlos M.G. Duran, Fred H. Edwards, Sitaram M. Emani, Jeremy J. Erasmus, Dario O. Fauza, Felix G. Fernandez, Hiran C. Fernando, Farzan Filsoufi, Michael P. Fischbein, Rosario V. Freeman, Joseph Friedberg, David A. Fullerton, Francis Fynn-Thompson, Lawrence A. Garcia, J. William Gaynor, Tal Geva, Sébastien Gilbert, A. Marc Gillinov, Donald D. Glower, Raja R. Gopaldas, Frederick L. Grover, Julius Guccione, Constanza J. Gutierrez, John R. Guyton, John W. Hammon, Zane T. Hammond, Thomas H. Hauser, Jennifer C. Hirsch, Chuong D. Hoang, Osami Honjo, Keith A. Horvath, Jeffrey Phillip Jacobs, Marshall L. Jacobs, Michael T. Jaklitsch, Stuart W. Jamieson, Doraid Jarrar, Douglas R. Johnston, David R. Jones, Mark E. Josephson, Lilian P. Joventino, Amy L. Juraszek, Larry R. Kaiser, Kirk R. Kanter, Aditya K. Kaza, Steven M. Keller, Clinton D. Kemp, Kemp H. Kernstine, Shaf Keshavjee, Mark J. Krasna, John C. Kucharczuk, Alan P. Kypson, Roger J. Laham, Michael J. Landzberg, Peter C. Laussen, Lawrence S. Lee, Scott A. LeMaire, Sidney Levitsky, Jerrold H. Levy, John R. Liddicoat, Peter H. Lin, Philip A. Linden, John C. Lipham, Michael J. Liptay, Virginia R. Litle, Bruce W. Lytle, James D. Luketich, Michael M. Madani, Michael A. Maddaus, Feroze Mahmood, Hari R. Mallidi, Abeel A. Mangi, Warren Manning, Edith M. Marom, Audrey C. Marshall, Christopher E. Mascio, David P. Mason, Douglas J. Mathisen, Kenneth L. Mattox, Robina Matyal, John E. Mayer, James McCulley, Doff McElhinney, Edwin C. McGee, Francis X. McGowan, Ciaran McNamee, Spencer J. Melby, Lorenzo Menicanti, Bryan F. Meyers, Carmelo A. Milano, D. Craig Miller, Daniel L. Miller, John D. Mitchell, Jeffrey A. Morgan, Sudish C. Murthy, Sacha Mussot, Alykhan S. Nagji, Yoshifumi Naka, Kurt D. Newman, Chukwumere Nwogu, Kirsten C. Odegard, Richard G. Ohye, Mark W. Onaitis, Catherine M. Otto, Mehmet C. Oz, Bernard J. Park, Amit N. Patel, G. Alexander Patterson, Edward F. Patz, Subroto Paul, Arjun Pennathur, Frank A. Pigula, Duane S. Pinto, Marvin Pomerantz, Jeffrey L. Port, Yuri B. Pride, Varun Puri, Basel Ramlawi, Mark Ratcliffe, John J. Reilly, Bruce A. Reitz, Karl G. Reyes, Thomas W. Rice, Robert C. Robbins, Gaetano Rocco, Audrey Rosinberg, Fraser Rubens, Marc Ruel, Valerie W. Rusch, Joseph F. Sabik, Hartzell V. Schaff, Frank W. Sellke, Rohit Shahani, Robert C. Shamberger, Steven S. Shay, Joseph B. Shrager, Dhruv Singhal, Peter K. Smith, Richard G. Smith, R. John Solaro, David J. Spurlock, Marie E. Steiner, Matthew A. Steliga, Brendon M. Stiles, Michaela Straznicka, David A. Stump, David J. Sugarbaker, Erik J. Suuronen, Lars G. Svensson, Scott J. Swanson, Wilson Y. Szeto, Kenichi A. Tanaka, Benedict J.W. Taylor, Patricia A. Thistlethwaite, Peter Tsai, Harold C. Urschel, Anne Marie Valente, Timothy L. Van Natta, Richard Van Praagh, Nikolay V. Vasilyev, Jeffrey B. Velotta, Gus J. Vlahakes, Pierre Voisine, Matthew J. Wall, Arthur Wallace, Garrett L. Walsh, Daniel C. Weiner, Todd S. Weiser, Benny Weksler, Margaret V. Westfall, Benson R. Wilcox, Jay M. Wilson, Joseph J. Wizorek, Douglas E. Wood, David Wrobleskim, John V. Wylie, Stephen C. Yang, Godfred Kwame Yankey, Sai Yendamuri, Susan B. Yeon, Barry L. Zaret, Yan Zhang, Xiaoqin Zhao, Peter J. Zimetbaum, Hannah Zimmerman
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::167c9b47fb674343c4f8fd52f984f59f
https://doi.org/10.1016/b978-1-4160-5225-8.00138-0
https://doi.org/10.1016/b978-1-4160-5225-8.00138-0
Autor:
Daniel C. Weiner, Marjorie G. Hahn
Publikováno v:
Journal of Theoretical Probability. 5:169-196
Let {X j} be independent, identically distributed random variables which are symmetric about the origin and have a continuous nondegenerate distributionF. Let {X n(1),...,X n(n)} denote the arrangement of {X 1,...,X n} in decreasing order of magnitud
Publikováno v:
Journal of Theoretical Probability. 3:137-168
Asymptotic normality, tightness, and weak convergence of the magnitude-Winsorized sums formed from symmetric i.i.d. random variables are studied via a new approach that first derives self-normalized (“studentized”) results and then uses these to
Autor:
Marjorie G. Hahn, Daniel C. Weiner
Publikováno v:
Probability in Banach Spaces, 8: ISBN: 9780817636579
Let X,X 1,X 2,…, be independent, identically distributed real random variables which are symmetric about the origin and have common nondegenerate distribution function F. Arrange the random sample X 1,X 2},…, X n in decreasing order of magnitude,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8d694e1c715eb06f9744ed96e97dde18
https://doi.org/10.1007/978-1-4612-0367-4_14
https://doi.org/10.1007/978-1-4612-0367-4_14
Publikováno v:
Sums, Trimmed Sums and Extremes ISBN: 9781468467956
If X1, X2, X3, ...,are independent, identically distributed (i.i.d.) random variables and \(S_n = \sum\nolimits_{i = 1}^n {X_i }\) otes the nth partial sum, then limit theorems such as the law of large numbers (LLN), the central limit theorem (CLT),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ecb97ae5eb443b062721b60e804d02ef
https://doi.org/10.1007/978-1-4684-6793-2_1
https://doi.org/10.1007/978-1-4684-6793-2_1
Publikováno v:
Sums, Trimmed Sums and Extremes
I Approaches to Trimming and Self-normalization Based on Analytic Methods.- Asymptotic Behavior of Partial Sums: A More Robust Approach Via Trimming and Self-Normalization.- Weak Convergence of Trimmed Sums.- Invariance Principles and Self-Normalizat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::240c9d48c6d812d946dd5f7cda9675fd
https://doi.org/10.1007/978-1-4684-6793-2
https://doi.org/10.1007/978-1-4684-6793-2
Autor:
Daniel C. Weiner, Marjorie G. Hahn
Publikováno v:
Sums, Trimmed Sums and Extremes ISBN: 9781468467956
A random variable X is said to have a joint tail distribution which is regularly varying of index -α if for each c > 0, $$ \mathop {\lim }\limits_{t \to \infty } \frac{{P(\left| X \right| > \,ct)}}{{P(|X|\, > \,t)}}\, = \,c^{ - \alpha }.$$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e59dc43f773f3167ce1c43bc1ab57e0b
https://doi.org/10.1007/978-1-4684-6793-2_4
https://doi.org/10.1007/978-1-4684-6793-2_4
Publikováno v:
Ann. Probab. 18, no. 3 (1990), 1284-1341
Empirical versions of appropriate centering and scale constants for random variables which can fail to have second or even first moments are obtainable in various ways via suitable modifications of the summands in the partial sum. This paper discusse
Publikováno v:
Journal of Multivariate Analysis. 24:1-10
Bounds on the norming operators for distributions in the domain of attraction of an operator-stable distribution are found. These bounds are used to establish the existence and nonexistence of moments of distributions in the domain of attraction of a
Autor:
Daniel C. Weiner
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783540157045
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9909c7a94d3fa70d3102065750dd1a44
https://doi.org/10.1007/bfb0074964
https://doi.org/10.1007/bfb0074964