Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Danial J. Armaghani"'
Autor:
Athanasia D. Skentou, Abidhan Bardhan, Anna Mamou, Minas E. Lemonis, Gaurav Kumar, Pijush Samui, Danial J. Armaghani, Panagiotis G. Asteris
Publikováno v:
Rock Mechanics and Rock Engineering. 56:487-514
The use of three artificial neural network (ANN)-based models for the prediction of unconfined compressive strength (UCS) of granite using three non-destructive test indicators, namely pulse velocity, Schmidt hammer rebound number, and effective poro
Autor:
Panagiotis G. Asteris, Styliani Kokoris, Eleni Gavriilaki, Markos Z. Tsoukalas, Panagiotis Houpas, Maria Paneta, Andreas Koutzas, Theodoros Argyropoulos, Nizar Faisal Alkayem, Danial J. Armaghani, Abidhan Bardhan, Liborio Cavaleri, Maosen Cao, Iman Mansouri, Ahmed Salih Mohammed, Pijush Samui, Gloria Gerber, Dimitrios T. Boumpas, Argyrios Tsantes, Evangelos Terpos, Meletios A. Dimopoulos
We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3424e6f966e4e8946fcc2fb3fbf13c91
https://hdl.handle.net/10447/595097
https://hdl.handle.net/10447/595097
Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques
Autor:
Panagiotis G. Asteris, Paulo B. Lourenço, Panayiotis C. Roussis, Chryssi Elpida Adami, Danial J. Armaghani, Liborio Cavaleri, Constantin E. Chalioris, Mohsen Hajihassani, Minas E. Lemonis, Ahmed S. Mohammed, Kypros Pilakoutas
In this study, a model for the estimation of the compressive strength of concretes incorporating metakaolin is developed and parametrically evaluated, using soft computing techniques. Metakaolin is a component extensively employed in recent decades a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::210e1a8cd65c946840721f313c4e097a
https://hdl.handle.net/10447/595106
https://hdl.handle.net/10447/595106