Zobrazeno 1 - 10
of 67
pro vyhledávání: '"Dang, Zhuoran"'
Autor:
Dang, Zhuoran, Ishii, Mamoru
Publikováno v:
International Journal of Heat and Mass Transfer, Volume 172, June 2021, 121095
This study aims to experimentally investigate the two-group interfacial area transport in small diameter pipes. Experimental data focusing on the bubbly to slug transition regime, namely one-group to two-group transport region, are collected in a 12.
Externí odkaz:
http://arxiv.org/abs/2011.04492
Publikováno v:
International Journal of Heat and Mass Transfer, Volume 165, Part A, 2021, 120556, ISSN 0017-9310
This experimental study focuses on the characteristics of air-water two-phase interfacial structure. Interfacial parameters including void fraction, interfacial area concentration, and bubble interfacial velocity are measured using four-sensor electr
Externí odkaz:
http://arxiv.org/abs/2009.01779
Autor:
Dang, Zhuoran
Fluid temperature is important for the analysis of the heat transfers in thermal hydraulics. An accurate measurement or estimation of the fluid temperature in multiphase flows is challenging. This is due to that the thermocouple signal that mixes wit
Externí odkaz:
http://arxiv.org/abs/2001.01803
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Experimental Thermal and Fluid Science 1 October 2023 148
Autor:
Dang, Zhuoran, Ishii, Mamoru
Publikováno v:
International Journal of Heat and Mass Transfer, Volume 192, 15 August 2022, 122919
The prediction of interfacial structure in two-phase flow systems is difficult and challenging. In this paper, a novel physics-informed reinforcement learning-aided framework (PIRLF) for the interfacial area transport is proposed. A Markov Decision P
Externí odkaz:
http://arxiv.org/abs/1908.02750
Autor:
Dang, Zhuoran, Ishii, Mamoru
Long short-term memory (LSTM) and recurrent neural network (RNN) has achieved great successes on time-series prediction. In this paper, a methodology of using LSTM-based deep-RNN for two-phase flow regime prediction is proposed, motivated by previous
Externí odkaz:
http://arxiv.org/abs/1904.00291
Autor:
Dang, Zhuoran
Publikováno v:
In International Journal of Heat and Mass Transfer February 2023 201 Part 2
Autor:
Dang, Zhuoran, Ishii, Mamoru
Publikováno v:
In International Journal of Heat and Mass Transfer 15 August 2022 192
Autor:
Dang, Zhuoran, Ishii, Mamoru
Publikováno v:
In Experimental Thermal and Fluid Science 1 June 2022 134