Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Dan Yasaki"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch
Externí odkaz:
https://doaj.org/article/fe07b3292d3f45ca97d2d3850a773ec0
Autor:
Avner Ash, Dan Yasaki
Publikováno v:
Journal of Number Theory. 246:49-86
Publikováno v:
Involve, a Journal of Mathematics. 15:727-738
Autor:
Dan Yasaki, Avner Ash
Publikováno v:
Journal of Number Theory. 224:323-367
We compare the homology of a congruence subgroup Gamma of GL_2(Z) with coefficients in the Steinberg modules over Q and over E, where E is a real quadratic field. If R is any commutative base ring, the last connecting homomorphism psi_{Gamma,E} in th
Publikováno v:
Journal of Topology. 13:441-459
We prove that the Steinberg module of the special linear group of a quadratic imaginary number ring which is not Euclidean is not generated by integral apartments. Assuming the generalized Riemann hypothesis, this shows that the Steinberg module of a
Publikováno v:
Experimental Mathematics. 30:499-512
Let F be the imaginary quadratic field of discriminant −3 and OF its ring of integers. Let Γ be the arithmetic group GL3(OF), and for any ideal n⊂OF let Γ0(n) be the congruence subgroup of level n ...
Publikováno v:
Forum of Mathematics, Sigma, 2021, Vol.9, pp.e40 [Peer Reviewed Journal]
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Blo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09de50c3a527f0c4a6f724258e1c7e11
http://dro.dur.ac.uk/34371/
http://dro.dur.ac.uk/34371/
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 19:537-569
Let $G$ be a semisimple Lie group with associated symmetric space $D$, and let $\unicode[STIX]{x1D6E4}\subset G$ be a cocompact arithmetic group. Let $\mathscr{L}$ be a lattice inside a $\mathbb{Z}\unicode[STIX]{x1D6E4}$-module arising from a rationa
Autor:
Dan Yasaki, Achill Schürmann, Paul E. Gunnells, Herbert Gangl, Jonathan Hanke, Mathieu Dutour Sikirić
Publikováno v:
Journal of homotopy and related structures, 2019, Vol.14, pp.281-291 [Peer Reviewed Journal]
In this paper we use topological tools to investigate the structure of the algebraic K-groups $$K_4(R)$$ for $$R=Z[i]$$ and $$R=Z[\rho ]$$ where $$i := \sqrt{-1}$$ and $$\rho := (1+\sqrt{-3})/2$$ . We exploit the close connection between homology gro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2714b13bd6dbff15d7b5ff72c271ffcc
http://dro.dur.ac.uk/29884/1/29884.pdf
http://dro.dur.ac.uk/29884/1/29884.pdf
Publikováno v:
Booker, A R, Sijsling, J, Sutherland, A V, Voight, J & Yasaki, D 2016, ' A database of genus-2 curves over the rational numbers ', LMS Journal of Computation and Mathematics, vol. 19, no. A, pp. 235-254 . https://doi.org/10.1112/S146115701600019X
We describe the construction of a database of genus 2 curves of small discriminant that includes geometric and arithmetic invariants of each curve, its Jacobian, and the associated L-function. This data has been incorporated into the L-Functions and