Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Damian Roessler"'
Autor:
Damian Roessler, Kai Köhler
Resume On considere des varietes arithmetiques munies d'une action du schema en groupes des racines n-ieme de l'unite et on definit la K0-theorie arithmetique equivariante pour ces varietes. On enonce ensuite un theoreme de Riemann-Roch pour la trans
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d43ce213062fb510f56c2d7d282c1e86
https://ora.ox.ac.uk/objects/uuid:1dcae2bf-3e32-4ea8-8d6e-6f7f4bd24bc1
https://ora.ox.ac.uk/objects/uuid:1dcae2bf-3e32-4ea8-8d6e-6f7f4bd24bc1
Publikováno v:
Oberwolfach Reports. :2447-2492
Autor:
Vincent Maillot, Damian Roessler
Publikováno v:
Annals of Mathematics. 160:727-754
We prove that the existence of an automorphism of finite order on a Q-variety X implies the existence of algebraic linear relations between the logarithm of certain periods of X and the logarithm of special values of the Γ-function. This implies tha
Autor:
Kai Koehler, Damian Roessler
Publikováno v:
Inventiones Mathematicae. 145:333-396
We consider arithmetic varieties endowed with an action of the group scheme of n-th roots of unity and we define equivariant arithmetic K 0-theory for these varieties. We use the equivariant analytic torsion to define direct image maps in this contex
Autor:
Damian Roessler
Publikováno v:
Number Fields and Function Fields—Two Parallel Worlds ISBN: 9780817643973
In the article [PR1] {\it On Hrushovski's proof of the Manin-Mumford conjecture} (Proceedings of the ICM 2002), R. Pink and the author gave a short proof of the Manin-Mumford conjecture, which was inspired by an earlier model-theoretic proof by Hrush
Autor:
Damian Roessler, Vincent Maillot
Publikováno v:
Number Fields and Function Fields—Two Parallel Worlds ISBN: 9780817643973
We give a new proof of the fact that the even terms (of a multiple of) the Chern character of the Hodge bundles of semi-abelian schemes are torsion classes in Chow theory and we give explicit bounds for almost all the prime powers appearing in their
Autor:
Richard Pink, Damian Roessler
Publikováno v:
Journal of Algebraic Geometry. 13(ARTN 4)
Let $A$ be a semiabelian variety over an algebraically closed field of arbitrary characteristic, endowed with a finite morphism $\psi: A\to A$. In this paper, we give an essentially complete classification of all $\psi$-invariant subvarieties of $A$.
Autor:
Kai Köhler, Damian Roessler
Publikováno v:
Journal für die reine und angewandte Mathematik. 2003(556)
We give a new proof of a slightly weaker form of a theorem of P. Colmez. This theorem gives a formula for the Faltings height of abelian varieties with complex multiplication by a C.M. field whose Galois group over $\bf Q$ is abelian; it reduces to t
Autor:
Damian Roessler
Publikováno v:
Duke Math. J. 96, no. 1 (1999), 61-126
We prove an analog of the classical Riemann-Roch theorem for Adams operations acting on K-theory, in the context of Arakelov geometry.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78a6de6a0343374e470dbcb5b111fb5d
http://projecteuclid.org/euclid.dmj/1077228943
http://projecteuclid.org/euclid.dmj/1077228943
Autor:
Richard Pink, Damian Roessler
Publikováno v:
Mathematische Annalen; Oct2004, Vol. 330 Issue 2, p293-308, 16p