Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Dama, Fatoumata"'
Autor:
Dama, Fatoumata, Sinoquet, Christine
Time series modeling for predictive purpose has been an active research area of machine learning for many years. However, no sufficiently comprehensive and meanwhile substantive survey was offered so far. This survey strives to meet this need. A unif
Externí odkaz:
http://arxiv.org/abs/2104.00164
Autor:
Dama, Fatoumata, Sinoquet, Christine
Time series subject to change in regime have attracted much interest in domains such as econometry, finance or meteorology. For discrete-valued regimes, some models such as the popular Hidden Markov Chain (HMC) describe time series whose state proces
Externí odkaz:
http://arxiv.org/abs/2102.12584
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dama, Fatoumata, Sinoquet, Christine
Publikováno v:
33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), IEEE-CS, Nov 2021, virtual event, United States
33rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), IEEE-CS, Nov 2021, virtual event, United States
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3eb8ee3a41fb35839fea12f75041ea2
https://hal.archives-ouvertes.fr/hal-03345260
https://hal.archives-ouvertes.fr/hal-03345260
Autor:
Dama, Fatoumata, Sinoquet, Christine
Publikováno v:
Machine Learning; Jan2023, Vol. 112 Issue 1, p45-97, 53p
Autor:
Dama, Fatoumata, Sinoquet, Christine
Publikováno v:
Actes CNIA PFIA 2021
CNIA 2021 : Conférence Nationale en Intelligence Artificielle
CNIA 2021 : Conférence Nationale en Intelligence Artificielle, Jun 2021, Bordeaux (en ligne), France. pp 14-21
CNIA 2021 : Conférence Nationale en Intelligence Artificielle
CNIA 2021 : Conférence Nationale en Intelligence Artificielle, Jun 2021, Bordeaux (en ligne), France. pp 14-21
International audience; Machine health diagnosis is a fundamental task dedicated to monitor systems’ safety in order to prevent incidents, and to program maintenance operations. Such diagnosis is achieved through analyzing the system’s features (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::7f6ffae568f991e05cfab937ff974c71
https://hal.archives-ouvertes.fr/hal-03321148
https://hal.archives-ouvertes.fr/hal-03321148