Zobrazeno 1 - 10
of 155 757
pro vyhledávání: '"Dam, A. P."'
This paper presents a hybrid Finite Element Method (FEM) and Material Point Method (MPM) approach for modeling liquefaction-induced tailings dam failures from initiation through runout. We apply this method to simulate the 1978 Mochikoshi tailings da
Externí odkaz:
http://arxiv.org/abs/2412.08040
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gomes Jr., Marcus N., Castro, Maria A. R. A., Castillo, Luis M. R., Sánchez, Mateo H., Giacomoni, Marcio H., de Paiva, Rodrigo C. D., Bates, Paul D.
Accurate flood modeling is crucial for effective analysis and forecasting. Full momentum hydrodynamic models often require extensive computational time, sometimes exceeding the forecast horizon. In contrast, low-complexity models, like local-inertial
Externí odkaz:
http://arxiv.org/abs/2410.09325
Merging in a Bottle: Differentiable Adaptive Merging (DAM) and the Path from Averaging to Automation
Autor:
Gauthier-Caron, Thomas, Siriwardhana, Shamane, Stein, Elliot, Ehghaghi, Malikeh, Goddard, Charles, McQuade, Mark, Solawetz, Jacob, Labonne, Maxime
By merging models, AI systems can combine the distinct strengths of separate language models, achieving a balance between multiple capabilities without requiring substantial retraining. However, the integration process can be intricate due to differe
Externí odkaz:
http://arxiv.org/abs/2410.08371
Autor:
Nikrou, Parvaneh, Pirboudaghi, Sajjad
The finite element method is an effective numerical method for accurate analysis of seepage that can determine the values of outlet flow and pore water pressures at any point of the body and the foundation. In the present study, the seepage analysis
Externí odkaz:
http://arxiv.org/abs/2410.06079
Autor:
Baño-Medina, Jorge, Sengupta, Agniv, Michaelis, Allison, Monache, Luca Delle, Kalansky, Julie, Watson-Parris, Duncan
AI data-driven models (Graphcast, Pangu Weather, Fourcastnet, and SFNO) are explored for storyline-based climate attribution due to their short inference times, which can accelerate the number of events studied, and provide real time attributions whe
Externí odkaz:
http://arxiv.org/abs/2409.11605
We report the observation of a two-dimensional dam break flow of a photon fluid in a nonlinear optical crystal. By precisely shaping the amplitude and phase of the input wave, we investigate the transition from one-dimensional (1D) to two-dimensional
Externí odkaz:
http://arxiv.org/abs/2409.18738