Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Dalmau, Joseba"'
Since the seminal paper of Hendrycks et al. arXiv:1610.02136, Post-hoc deep Out-of-Distribution (OOD) detection has expanded rapidly. As a result, practitioners working on safety-critical applications and seeking to improve the robustness of a neural
Externí odkaz:
http://arxiv.org/abs/2407.07135
We propose a post-hoc, computationally lightweight method to quantify predictive uncertainty in semantic image segmentation. Our approach uses conformal prediction to generate statistically valid prediction sets that are guaranteed to include the gro
Externí odkaz:
http://arxiv.org/abs/2405.05145
Research on Out-Of-Distribution (OOD) detection focuses mainly on building scores that efficiently distinguish OOD data from In Distribution (ID) data. On the other hand, Conformal Prediction (CP) uses non-conformity scores to construct prediction se
Externí odkaz:
http://arxiv.org/abs/2403.11532
Ballistic deposition is a classical model for interface growth in which unit blocks fall down vertically at random on the different sites of $\mathbb{Z}$ and stick to the interface at the first point of contact, causing it to grow. We consider an alt
Externí odkaz:
http://arxiv.org/abs/2203.06133
Autor:
Dalmau, Joseba, Salvi, Michele
Spatial random graphs capture several important properties of real-world networks. We prove quenched results for the continuum space version of scale-free percolation introduced in [DW18]. This is an undirected inhomogeneous random graph whose vertic
Externí odkaz:
http://arxiv.org/abs/1902.05774
Autor:
Dalmau, Joseba
Le concept de quasi-espèce, introduit par Manfred Eigen dans les années 70, décrit l'état d'équilibre d'une population subissant des forces de mutation et sélection. La plupart des modèles classiques présentant un phénomène de quasi-espèce
Externí odkaz:
http://www.theses.fr/2016SACLS452/document
Autor:
Cerf, Raphaël, Dalmau, Joseba
Let $A$ be a primitive matrix and let $\lambda$ be its Perron-Frobenius eigenvalue. We give formulas expressing the associated normalized Perron-Frobenius eigenvector as a simple functional of a multitype Galton-Watson process whose mean matrix is $A
Externí odkaz:
http://arxiv.org/abs/1803.08846
Autor:
Cerf, Raphaël, Dalmau, Joseba
We present an alternative proof of Perron's theorem, which is probabilistic in nature. It rests on the representation of the Perron eigenvector as a functional of the trajectory of an auxiliary Markov chain.
Comment: This is a minor improvement
Comment: This is a minor improvement
Externí odkaz:
http://arxiv.org/abs/1801.05252
Autor:
Dalmau, Joseba
We consider a population evolving under mutation and selection. The genotype of an individual is a word of length $\ell$ over a finite alphabet. Mutations occur during reproduction, independently on each locus; the fitness depends on the Hamming clas
Externí odkaz:
http://arxiv.org/abs/1712.00279
Autor:
Dalmau, Joseba
We study Eigen's quasispecies model in the asymptotic regime where the length of the genotypes goes to infinity and the mutation probability goes to 0. A limiting infinite system of differential equations is obtained. We prove the convergence of the
Externí odkaz:
http://arxiv.org/abs/1704.07280