Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Dairbekov, Nurlan S."'
Autor:
Dairbekov, Nurlan S.1 (AUTHOR) n.dairbekov@math.kz, Penkin, Oleg M.1 (AUTHOR), Savasteev, Denis V.1 (AUTHOR)
Publikováno v:
Symmetry (20738994). Apr2024, Vol. 16 Issue 4, p486. 17p.
Publikováno v:
Ergod. Th. Dynam. Sys. 34 (2014) 1761-1769
We show a Hopf type rigidity for thermostats without conjugate points on a 2-torus
Comment: 9 pages; minor revisions to reflect published version
Comment: 9 pages; minor revisions to reflect published version
Externí odkaz:
http://arxiv.org/abs/1204.4380
We consider a general family of curves $\Gamma$ on a compact oriented Finsler surface $(M,F)$ with boundary $\partial M$. Let $\varphi\in C^{\infty}(M)$ and $\omega$ a smooth 1-form on $M$. We show that $$\int_{\gamma(t)}\{\varphi(\gamma(t))+\omega_{
Externí odkaz:
http://arxiv.org/abs/1204.4383
Publikováno v:
Siberian Advances in Mathematics, 2011, Vol. 21, No. 1, pp. 1-41
A vector field on a Riemannian manifold is called conformal Killing if it generates one-parameter group of conformal transformations. The class of conformal Killing symmetric tensor fields of an arbitrary rank is a natural generalization of the class
Externí odkaz:
http://arxiv.org/abs/1103.3637
We consider a magnetic flow without conjugate points on a closed manifold $M$ with generating vector field $\G$. Let $h\in C^{\infty}(M)$ and let $\theta$ be a smooth 1-form on $M$. We show that the cohomological equation \[\G(u)=h\circ \pi+\theta\]
Externí odkaz:
http://arxiv.org/abs/0807.4602
We show that an arbitrary Anosov Gaussian thermostat close to equilibrium has positive entropy poduction unless the external field $E$ has a global potential. The configuration space is allowed to have any dimension and magnetic forces are also allow
Externí odkaz:
http://arxiv.org/abs/math/0610263
We consider an optical hypersurface $\Sigma$ in the cotangent bundle $\tau:T^*M\to M$ of a closed manifold $M$ endowed with a twisted symplectic structure. We show that if the characteristic foliation of $\Sigma$ is Anosov, then a smooth 1-form $\the
Externí odkaz:
http://arxiv.org/abs/math/0508316
Publikováno v:
Transactions of the American Mathematical Society, 2000 Sep 01. 352(9), 3937-3956.
Externí odkaz:
https://www.jstor.org/stable/118166
Publikováno v:
In Advances in Mathematics 2007 216(2):535-609
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.