Zobrazeno 1 - 10
of 424
pro vyhledávání: '"Dai Guowei"'
Autor:
Dai Guowei
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 43, Iss 1, Pp 5-16 (2023)
A spanning subgraph H of a graph G is called a P≥k-factor of G if every component of H is isomorphic to a path of order at least k, where k ≥ 2. A graph G is called a P≥k-factor covered graph if there is a P≥k-factor of G covering e for any e
Externí odkaz:
https://doaj.org/article/5a5b120ad01e4fec999ba65682d33c27
Autor:
Dai, Guowei, Vetro, Francesca
In this paper, we consider a new class of multi phase operators with variable exponents, which reflects the inhomogeneous characteristics of hardness changes when multiple different materials are combined together. We at first deal with the correspon
Externí odkaz:
http://arxiv.org/abs/2407.14123
We construct nontrivial unbounded domains $\Omega$ in the hyperbolic space $\mathbb{H}^N$, $N \in \{2,3,4\}$, bifurcating from the complement of a ball, such that the overdetermined elliptic problem \begin{equation} -\Delta_{\mathbb{H}^N} u+u-u^p=0\,
Externí odkaz:
http://arxiv.org/abs/2405.04348
Autor:
Dai, Guowei, Zhang, Yong
In this paper, we prove the existence of $k$ families of smooth unbounded domains $\Omega_s\subset\mathbb{R}^{N+1}$ with $N\geq1$, where \begin{equation} \Omega_s=\left\{(x,t)\in \mathbb{R}^N\times \mathbb{R}:\vert x\vert<1+s\cos \left(\frac{2\pi}{T(
Externí odkaz:
http://arxiv.org/abs/2307.11797
Autor:
Dai, Guowei, Zhang, Yong
In this paper, we consider the following overdetermined eigenvalue problem on an unbounded domain $\Omega\subset\mathbb{R}^{N+1}$ with $N\geq1$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u=\lambda u\,\, &\text{in}\,\, \Omega,\\ u=0 &\text{on}
Externí odkaz:
http://arxiv.org/abs/2307.11441
A spanning subgraph $H$ of a graph $G$ is called a $P_{\geq k}$-factor of $G$ if every component of $H$ is isomorphic to a path of order at least $k$, where $k\geq2$ is an integer. A graph $G$ is called a $(P_{\geq k},l)$-factor critical graph if $G-
Externí odkaz:
http://arxiv.org/abs/2305.04713
Autor:
Dai, Guowei, Zhang, Yong
We prove the existence of two smooth families of unbounded domains in $\mathbb{R}^{N+1}$ with $N\geq1$ such that \begin{equation} -\Delta u=\lambda u\,\, \text{in}\,\,\Omega, \,\, u=0,\,\,\partial_\nu u=\text{const}\,\,\text{on}\,\,\partial\Omega\non
Externí odkaz:
http://arxiv.org/abs/2304.05550
Autor:
Dai, Guowei, Zhang, Yong
We obtain a continuous family of nontrivial domains $\Omega_s\subset \mathbb{R}^N$ ($N=2,3$ or $4$), bifurcating from a small ball, such that the problem \begin{equation} -\Delta u=u-\left(u^+\right)^3\,\, \text{in}\,\,\Omega_s, \,\, u=0,\,\,\partial
Externí odkaz:
http://arxiv.org/abs/2304.04525
Autor:
Dai, Guowei1,2 (AUTHOR) daigw@stu.scu.edu.cn, Luo, Shuai1,2 (AUTHOR), Chen, Hu1,2 (AUTHOR) huchen@scu.edu.cn, Ji, Yulong1,2 (AUTHOR) huchen@scu.edu.cn
Publikováno v:
Sensors (14248220). Oct2024, Vol. 24 Issue 20, p6590. 23p.
Global bifurcation structure and geometric properties for steady periodic water waves with vorticity
Autor:
Dai, Guowei, Zhang, Yong
This paper studies the classical water wave problem with vorticity described by the Euler equations with a free surface under the influence of gravity over a flat bottom. Based on fundamental work \cite{ConstantinStrauss}, we first obtain two continu
Externí odkaz:
http://arxiv.org/abs/2207.04402