Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Dahmane Achour"'
Autor:
Dahmane Achour, Toufik Tiaiba
Publikováno v:
Applied General Topology, Vol 25, Iss 1, Pp 237-251 (2024)
In this paper we study the space of strongly Lipschitz (ℓp ,ℓq) -factorable operators between metric spaces and a Banach spaces. In particular, a factorization of this class through ℓp and ℓq spaces is given. We show that this type of operato
Externí odkaz:
https://doaj.org/article/71847d6e1fb0408c9094954d3464899c
Autor:
Toufik Tiaiba, Dahmane Achour
Publikováno v:
Moroccan Journal of Pure and Applied Analysis. 8:28-43
We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the st
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2. 71:793-806
We introduce the Banach space of strongly $$(p,q,\sigma )$$ -summable sequences with values in a Banach space obtaining in this way some characterizations of the two classes of already known operators: the strongly $$(p,\sigma )$$ -continuous operato
Autor:
Aldjia Attallah, Dahmane Achour
Publikováno v:
Colloquium Mathematicum. 166:53-73
Publikováno v:
Banach Journal of Mathematical Analysis. 14:1241-1257
We introduce and study the Lipschitz injective hull of Lipschitz operator ideals defined between metric spaces. We show some properties and apply the results to the ideal of Lipschitz p-nuclear operators, obtaining the ideal of Lipschitz quasi p-nucl
Publikováno v:
Filomat. 34:3627-3637
In this paper we provide a detailed study of the Banach space of strongly (p,q)-summable sequences. We prove that this space is a topological dual of a class of mixed (s,p)-summable sequences, showing in this way new properties of this space. We appl
Autor:
Aldjia Attallah, Dahmane Achour
Publikováno v:
Advances in Operator Theory. 6
We introduce and study the new ideal of strongly Lorentz summing operators between Banach spaces generated by strongly Lorentz sequence spaces to study the adjoints of the Lorentz summing operators. We also prove the related dual result: an operator
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:969-986
We characterize in terms of summabiility those homogeneous polynomials whose linearization is p-nuclear. This characterization provides a strong link between the theory of p-nuclear linear operators and the (non linear) homogeneous p-nuclear polynomi
Publikováno v:
Journal of Mathematical Analysis and Applications. 491:124346
We introduce and investigate the concept of two-Lipschitz operator ideal between pointed metric spaces and Banach spaces. We show the basics of this new theory and we give a procedure to create a two-Lipschitz operator ideal from a linear operator id
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
[EN] Operators T that belong to some summing operator ideal, can be characterized by means of the continuity of an associated tensor operator T that is de¿ned between tensor products of sequences spaces. In this paper we provide a unifying treatment