Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Daguang Xu"'
Autor:
Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Bennett A. Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Bram van Ginneken, Michel Bilello, Patrick Bilic, Patrick F. Christ, Richard K. G. Do, Marc J. Gollub, Stephan H. Heckers, Henkjan Huisman, William R. Jarnagin, Maureen K. McHugo, Sandy Napel, Jennifer S. Golia Pernicka, Kawal Rhode, Catalina Tobon-Gomez, Eugene Vorontsov, James A. Meakin, Sebastien Ourselin, Manuel Wiesenfarth, Pablo Arbeláez, Byeonguk Bae, Sihong Chen, Laura Daza, Jianjiang Feng, Baochun He, Fabian Isensee, Yuanfeng Ji, Fucang Jia, Ildoo Kim, Klaus Maier-Hein, Dorit Merhof, Akshay Pai, Beomhee Park, Mathias Perslev, Ramin Rezaiifar, Oliver Rippel, Ignacio Sarasua, Wei Shen, Jaemin Son, Christian Wachinger, Liansheng Wang, Yan Wang, Yingda Xia, Daguang Xu, Zhanwei Xu, Yefeng Zheng, Amber L. Simpson, Lena Maier-Hein, M. Jorge Cardoso
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-13 (2022)
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well o
Externí odkaz:
https://doaj.org/article/b2b75489b22a48efa4cd6eef2bea9d67
Publikováno v:
Machine Learning and Knowledge Extraction, Vol 3, Iss 2, Pp 507-524 (2021)
Medical image annotation is a major hurdle for developing precise and robust machine-learning models. Annotation is expensive, time-consuming, and often requires expert knowledge, particularly in the medical field. Here, we suggest using minimal user
Externí odkaz:
https://doaj.org/article/b17c707add094b1a970301c0e3fa99bf
Autor:
Michael T. Kassin, Nicole Varble, Maxime Blain, Sheng Xu, Evrim B. Turkbey, Stephanie Harmon, Dong Yang, Ziyue Xu, Holger Roth, Daguang Xu, Mona Flores, Amel Amalou, Kaiyun Sun, Sameer Kadri, Francesca Patella, Maurizio Cariati, Alice Scarabelli, Elvira Stellato, Anna Maria Ierardi, Gianpaolo Carrafiello, Peng An, Baris Turkbey, Bradford J. Wood
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
Abstract A better understanding of temporal relationships between chest CT and labs may provide a reference for disease severity over the disease course. Generalized curves of lung opacity volume and density over time can be used as standardized refe
Externí odkaz:
https://doaj.org/article/228e583d255244fba804c6a894b67263
Autor:
Maxime Blain, Michael T. Kassin, Nicole Varble, Xiaosong Wang, Ziyue Xu, Daguang Xu, Gianpaolo Carrafiello, Valentina Vespro, Elvira Stellato, Anna Maria Ierardi, Letizia Di Meglio, Robert D. Suh, Stephanie A. Walker, Sheng Xu, Thomas H. Sanford, Evrim B. Turkbey, Stephanie Harmon, Baris Turkbey, Bradford J. Wood
Publikováno v:
Diagnostic and Interventional Radiology, Vol 27, Iss 1, Pp 20-27 (2021)
PURPOSEChest X-ray plays a key role in diagnosis and management of COVID-19 patients and imaging features associated with clinical elements may assist with the development or validation of automated image analysis tools. We aimed to identify associat
Externí odkaz:
https://doaj.org/article/a50fc269bfff4b88b1e67a02b77dd973
Autor:
Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso
Publikováno v:
npj Digital Medicine, Vol 3, Iss 1, Pp 1-7 (2020)
Abstract Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully
Externí odkaz:
https://doaj.org/article/32cc7c58a8074ffe8d62799e5fe58178
Autor:
Stephanie A. Harmon, Thomas H. Sanford, Sheng Xu, Evrim B. Turkbey, Holger Roth, Ziyue Xu, Dong Yang, Andriy Myronenko, Victoria Anderson, Amel Amalou, Maxime Blain, Michael Kassin, Dilara Long, Nicole Varble, Stephanie M. Walker, Ulas Bagci, Anna Maria Ierardi, Elvira Stellato, Guido Giovanni Plensich, Giuseppe Franceschelli, Cristiano Girlando, Giovanni Irmici, Dominic Labella, Dima Hammoud, Ashkan Malayeri, Elizabeth Jones, Ronald M. Summers, Peter L. Choyke, Daguang Xu, Mona Flores, Kaku Tamura, Hirofumi Obinata, Hitoshi Mori, Francesca Patella, Maurizio Cariati, Gianpaolo Carrafiello, Peng An, Bradford J. Wood, Baris Turkbey
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-7 (2020)
Chest CT is emerging as a valuable diagnostic tool for clinical management of COVID-19 associated lung disease. Here, the authors present a multinational study on the application of deep learning algorithms for COVID-19 diagnosis against multiple lun
Externí odkaz:
https://doaj.org/article/6f9c98cf760e4d96a63cb5040206bc04
Autor:
Peter A. Pinto, Stephanie Harmon, Samira Masoudi, Dong Yang, Holger R. Roth, Deepak Kesani, Baris Turkbey, Daguang Xu, Thomas Sanford, Sherif Mehralivand, Bradford J. Wood, Maria J. Merino, Nathan Lay, Peter L. Choyke, Ziyue Xu
Publikováno v:
Academic Radiology. 29:1159-1168
Rationale and objectives Prostate MRI improves detection of clinically significant prostate cancer; however, its diagnostic performance has wide variation. Artificial intelligence (AI) has the potential to assist radiologists in the detection and cla
Autor:
Jiahui Guan, Krishna Juluru, Yothin Rakvongthai, Benjamin S. Glicksberg, Watsamon Jantarabenjakul, Li-Chen Fu, Mike Fralick, Anthony Costa, Quanzheng Li, Andrew Feng, Eric K. Oermann, Joshua D. Kaggie, Xihong Lin, Pedro Mário Cruz e Silva, Deepeksha Bhatia, Byung Seok Kim, Hitoshi Mori, Pablo F. Damasceno, Peiying Ruan, Yuhong Wen, Hao-Hsin Shin, Amilcare Gentili, Weichung Wang, Chiu-Ling Lai, Jason C. Crane, Andrew N. Priest, Soo-Young Park, Peerapon Vateekul, Matheus Ribeiro Furtado de Mendonça, Gustavo César de Antônio Corradi, Griffin Lacey, Meena AbdelMaseeh, Yu Rim Lee, Tatsuya Kodama, Pierre Elnajjar, Krishna Nand Keshava Murthy, Xiang Li, Evan Leibovitz, Vitor Lavor, Christopher P. Hess, Colin B. Compas, Stefan Gräf, Masoom A. Haider, Daguang Xu, Nicola Rieke, Thanyawee Puthanakit, Sarah E Hickman, Hui Ren, Marcio Aloisio Bezerra Cavalcanti Rockenbach, Jung Gil Park, Jesse Tetreault, Hisashi Sasaki, Min Kyu Kang, Won Young Tak, Chun-Nan Hsu, Fiona J. Gilbert, Chin Lin, Varun Buch, Felipe Kitamura, Tony Mazzulli, Eddie Huang, Abood Quraini, Shelley McLeod, Young Joon Kwon, Gustavo Nino, Dufan Wu, Chien-Sung Tsai, Mona Flores, Baris Turkbey, Sira Sriswasdi, Pochuan Wang, Mohammad Adil, Aoxiao Zhong, Chih-Hung Wang, Sheng Xu, C. K. Lee, Isaac Yang, Marius George Linguraru, Holger R. Roth, Chia-Jung Hsu, Anas Z. Abidin, Thomas M. Grist, Hirofumi Obinata, Sheridan Reed, Andrew Liu, Ahmed Harouni, Natalie Gangai, Ittai Dayan, Kristopher Kersten, Stephanie Harmon, Jae Ho Sohn, John Garrett, Bradford J. Wood, Sharmila Majumdar, Bernardo Bizzo, Shuichi Kawano, Keith J. Dreyer, Carlos Tor-Díez, Chia-Cheng Lee
Publikováno v:
Nature Medicine. 27:1735-1743
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe
Autor:
Kelly Payette, Hongwei Bran Li, Priscille de Dumast, Roxane Licandro, Hui Ji, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Hao Liu, Yuchen Pei, Lisheng Wang, Ying Peng, Juanying Xie, Huiquan Zhang, Guiming Dong, Hao Fu, Guotai Wang, ZunHyan Rieu, Donghyeon Kim, Hyun Gi Kim, Davood Karimi, Ali Gholipour, Helena R. Torres, Bruno Oliveira, João L. Vilaça, Yang Lin, Netanell Avisdris, Ori Ben-Zvi, Dafna Ben Bashat, Lucas Fidon, Michael Aertsen, Tom Vercauteren, Daniel Sobotka, Georg Langs, Mireia Alenyà, Maria Inmaculada Villanueva, Oscar Camara, Bella Specktor Fadida, Leo Joskowicz, Liao Weibin, Lv Yi, Li Xuesong, Moona Mazher, Abdul Qayyum, Domenec Puig, Hamza Kebiri, Zelin Zhang, Xinyi Xu, Dan Wu, Kuanlun Liao, Yixuan Wu, Jintai Chen, Yunzhi Xu, Li Zhao, Lana Vasung, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab
Publikováno v:
Medical Image Analysis. 88:102833
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in th
Publikováno v:
Machine Learning and Knowledge Extraction
Volume 3
Issue 2
Pages 26-524
Machine Learning and Knowledge Extraction, Vol 3, Iss 26, Pp 507-524 (2021)
Volume 3
Issue 2
Pages 26-524
Machine Learning and Knowledge Extraction, Vol 3, Iss 26, Pp 507-524 (2021)
Medical image annotation is a major hurdle for developing precise and robust machine learning models. Annotation is expensive, time-consuming, and often requires expert knowledge, particularly in the medical field. Here, we suggest using minimal user