Zobrazeno 1 - 10
of 1 173
pro vyhledávání: '"Dagotto E"'
Valence bond (VB) states as the formation mechanism of Cooper pairs, eventually leading to high-temperature superconductivity, remain a controversial topic. Although various VB-like states find variational relevance in the description of specific spi
Externí odkaz:
http://arxiv.org/abs/2411.03771
Autor:
Scheie, A. O., Lee, Minseong, Wang, Kevin, Laurell, P., Choi, E. S., Pajerowski, D., Zhang, Qingming, Ma, Jie, Zhou, H. D., Lee, Sangyun, Thomas, S. M., Ajeesh, M. O., Rosa, P. F. S., Chen, Ao, Zapf, Vivien S., Heyl, M., Batista, C. D., Dagotto, E., Moore, J. E., Tennant, D. Alan
We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measurements of triangular lattice NaYbSe$_2$. We observe a continuum of scattering, which is reproduced by matrix product simulations, and no phase trans
Externí odkaz:
http://arxiv.org/abs/2406.17773
Autor:
Jażdżewska, A., Mierzejewski, M., Środa, M., Nocera, A., Alvarez, G., Dagotto, E., Herbrych, J.
Publikováno v:
Nat. Commun. 14, 8524 (2023)
One of the most famous quantum systems with topological properties, the spin $\mathcal{S}=1$ antiferromagnetic Heisenberg chain, is well-known to display exotic $\mathcal{S}=1/2$ edge states. However, this spin model has not been analyzed from the mo
Externí odkaz:
http://arxiv.org/abs/2304.11154
Publikováno v:
Phys. Rev. B 108, L081102 (2023)
Spectroscopy experiments are routinely used to characterize the behavior of strongly correlated systems. An in-depth understanding of the different spectral features is thus essential. Here, we show that the spectrum of the multiorbital Hubbard model
Externí odkaz:
http://arxiv.org/abs/2210.11209
Autor:
Zhang, H., Xing, C. K., Noordhoek, K., Liu, Z., Zhao, T. H., Horák, L., Huang, Q., Hao, L., Yang, J., Pandey, S., Dagotto, E., Jiang, Z., Chu, J. H., Xin, Y., Choi, E. S., Zhou, H. D., Liu, J.
Publikováno v:
Nat Commun 14, 1404 (2023)
While geometrically frustrated quantum magnets are known for a variety of exotic spin states that are of great interests of understanding emergent phenomena as well as enabling revolutionary quantum technologies, most of them are necessarily good ins
Externí odkaz:
http://arxiv.org/abs/2011.09048
Publikováno v:
Nat. Commun. 12, 2955 (2021)
Topological phases of matter are among the most intriguing research directions in Condensed Matter Physics. It is known that superconductivity induced on a topological insulator's surface can lead to exotic Majorana modes, the main ingredient of many
Externí odkaz:
http://arxiv.org/abs/2011.05646
Publikováno v:
Phys. Rev. B 102, 115134 (2020)
We present a comprehensive study of the spin excitations - as measured by the dynamical spin structure factor $S(q,\omega)$ - of the so-called block-magnetic state of low-dimensional orbital-selective Mott insulators. We realize this state via both a
Externí odkaz:
http://arxiv.org/abs/2006.09495
Publikováno v:
Proc. Natl Acad. Sci. USA 117, 16226 (2020)
Competing interactions in Quantum Materials induce novel states of matter such as frustrated magnets, an extensive field of research both from the theoretical and experimental perspectives. Here, we show that competing energy scales present in the lo
Externí odkaz:
http://arxiv.org/abs/1911.12248
Autor:
Herbrych, J., Heverhagen, J., Patel, N. D., Alvarez, G., Daghofer, M., Moreo, A., Dagotto, E.
Publikováno v:
Phys. Rev. Lett. 123, 027203 (2019)
Inelastic neutron scattering recently confirmed the theoretical prediction of a $\uparrow\uparrow\downarrow\downarrow$-magnetic state along the legs of quasi-one-dimensional (quasi-1D) iron-based ladders in the orbital-selective Mott phase (OSMP). We
Externí odkaz:
http://arxiv.org/abs/1812.00325
Publikováno v:
Nat. Commun. 9, 3736 (2018)
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed
Externí odkaz:
http://arxiv.org/abs/1804.01959