Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Dag, Idris"'
The extended definition of the polynomial B-splines may give a chance to improve the results obtained by the classical cubic polynomial B-splines. Determination of the optimum value of the extension parameter can be achieved by scanning some interval
Externí odkaz:
http://arxiv.org/abs/1702.02776
Numerical Solution of Singularly Perturbed Problems via both Galerkin and Subdomain Galerkin methods
Autor:
Hepson, Ozlem Ersoy, Dag, Idris
In this paper, numerical solutions of singularly perturbed boundary value problems are given by using variants of finite element method. Both Galerkin and subdomain Galerkin method based on quadratic B-spline functions are applied over the geometrica
Externí odkaz:
http://arxiv.org/abs/1702.02328
The extended form of the classical polynomial cubic B-spline function is used to set up a collocation method for some initial boundary value problems derived for the Korteweg-de Vries-Burgers equation. Having nonexistence of third order derivatives o
Externí odkaz:
http://arxiv.org/abs/1701.02893
In this paper, we investigate the numerical solutions of the cubic nonlinear Schrodinger equation via the exponential B-spline collocation method. Crank-Nicolson formulas are used for time discretization of the target equation. A linearization techni
Externí odkaz:
http://arxiv.org/abs/1607.00166
Autor:
Ersoy, Ozlem, Dag, Idris
In this study, we set up a numerical technique to get approximate solutions of Fisher's equation which is one of the most important model equation in population biology. We integrate the equation fully by using combination of the trigonometric cubic
Externí odkaz:
http://arxiv.org/abs/1604.06864
The exponential cubic B-spline functions are used to set up the collocation method for finding solutions of the Burgers's equation. The effect of the exponential cubic B-splines in the collocation method is sought by studying four text problems.
Externí odkaz:
http://arxiv.org/abs/1604.04418
Autor:
Ersoy, Ozlem, Dag, Idris
The coupled Burgers equation is solved by way of the trigonometric B-spline collocation method. The unknown of the coupled Burgers equation is integrated in time by aid of the Crank-Nicolson method. Resulting time-integrated coupled Burgers equation
Externí odkaz:
http://arxiv.org/abs/1604.04419
Autor:
Gorgulu, Melis Zorsahin, Dag, Idris
Publikováno v:
International Journal of Mathematical Modelling & Computations, 8 (2018) 2-3
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples\ related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse
Externí odkaz:
http://arxiv.org/abs/1604.04267
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.