Zobrazeno 1 - 10
of 121
pro vyhledávání: '"Daeyeoul Kim"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-23 (2020)
Abstract For a positive integer k, let F ( q ) k : = ∏ n ≥ 1 ( 1 − q n ) 4 k ( 1 + q 2 n ) 2 k = ∑ n ≥ 0 a k ( n ) q n $$ F (q)^{k}:= \prod_{n \geq 1} \frac{(1-q^{n})^{4k}}{(1+q^{2n})^{2k}} = \sum_{n\geq 0} \frak{a}_{k} (n)q^{n} $$ be the e
Externí odkaz:
https://doaj.org/article/d46f12dabd604c2eb2739df1960c0c23
Autor:
Yilmaz Simsek, Daeyeoul Kim
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-9 (2018)
Abstract The aim of this is to give generating functions for new families of special numbers and polynomials of higher order. By using these generating functions and their functional equations, we derive identities and relations for these numbers and
Externí odkaz:
https://doaj.org/article/4cafc8b875484d5a9c01e08f56ab7e2b
Publikováno v:
Advances in Difference Equations, Vol 2017, Iss 1, Pp 1-11 (2017)
Abstract In this manuscript, generating functions are constructed for the new special families of polynomials and numbers using the p-adic q-integral technique. Partial derivative equations, functional equations and other properties of these generati
Externí odkaz:
https://doaj.org/article/83bd40db75a84c548bc21ef7de84c96d
Autor:
Daeyeoul Kim, Yilmaz Simsek
Publikováno v:
Mathematics, Vol 9, Iss 3, p 233 (2021)
In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functi
Externí odkaz:
https://doaj.org/article/b77d0fef6e5b42fb963b19114a3fe10a
Publikováno v:
Mathematics, Vol 7, Iss 11, p 1083 (2019)
In this paper, according to some numerical computational evidence, we investigate and prove certain identities and properties on the absolute Möbius divisor functions and Euler totient function when they are iterated. Subsequently, the relationship
Externí odkaz:
https://doaj.org/article/f105e60d76204a83a7a5132b2f8e6af3
Publikováno v:
Sensors, Vol 11, Iss 3, Pp 2319-2333 (2011)
In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local deriva
Externí odkaz:
https://doaj.org/article/ed1de7a692404a3fb10547bbd030d044
Autor:
Abdelmejid Bayad, Daeyeoul Kim
Publikováno v:
Mathematics, Vol 6, Iss 12, p 337 (2018)
Let m 1 , ⋯ , m r be nonnegative integers, and set: M r = m 1 + ⋯ + m r . In this paper, first we establish an explicit linear decomposition of: ∏ i = 1 r B m i ( x ) m i ! in terms of Bernoulli polynomials B k ( x ) with 0 ≤ k ≤ M r . Seco
Externí odkaz:
https://doaj.org/article/80b98a2a654e471eae187947ac74ba1e
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We study combinatoric convolution sums of certain divisor functions involving even indices. We express them as a linear combination of divisor functions and Euler polynomials and obtain identities D2k(n)=(1/4)σ2k+1,0(n;2)-2·42kσ2k+1(n/4) -(1/2)[
Externí odkaz:
https://doaj.org/article/8d1dcee0311f4d34aab9be8a88a5c2dc
Autor:
Daeyeoul Kim, Yoon Kyung Park
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We study the combinatoric convolution sums involving odd divisor functions, their relations to Bernoulli numbers, and some interesting applications.
Externí odkaz:
https://doaj.org/article/39703aa9d3da4621b76e0e0b813fab7c
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
Mahmudov (2012, 2013) introduced and investigated some q-extensions of the q-Bernoulli polynomials ℬn,qαx,y of order α, the q-Euler polynomials ℰn,qαx,y of order α, and the q-Genocchi polynomials 𝒢n,qαx,y of order α. In this paper, we gi
Externí odkaz:
https://doaj.org/article/653e116916104147aeb7c700a6becbbe