Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Dadkhah, Ali A."'
Publikováno v:
In Desalination and Water Treatment October 2024 320
The role of living labs in cultivating inclusive and responsible innovation in precision agriculture
Autor:
Gardezi, Maaz, Abuayyash, Halimeh, Adler, Paul R., Alvez, Juan P., Anjum, Rubaina, Badireddy, Appala Raju, Brugler, Skye, Carcamo, Pablo, Clay, David, Dadkhah, Ali, Emery, Mary, Faulkner, Joshua W., Joshi, Bhavna, Joshi, Deepak R., Khan, Awais Hameed, Koliba, Christopher, Kumari, Sheetal, McMaine, John, Merrill, Scott, Mitra, Shreya, Musayev, Sardorbek, Oikonomou, Panagiotis D., Pinder, George, Prutzer, Edward, Rathore, Jitender, Ricketts, Taylor, Rizzo, Donna M., Ryan, Benjamin E.K., Sahraei, Maryam, Schroth, Andrew W., Turnbull, Scott, Zia, Asim
Publikováno v:
In Agricultural Systems April 2024 216
Autor:
DeCola, Amy C., Toppen, Lucinda C., Brown, Kennedy P., Dadkhah, Ali, Rizzo, Donna M., Ziels, Ryan M., Scarborough, Matthew J.
Publikováno v:
In Bioresource Technology February 2024 394
Publikováno v:
Anal. Math. Phys. 9 (2019), no. 4, 2151--2169
In this paper, we aim to replace in the definitions of covariance and correlation the usual trace {\rm Tr} by a tracial positive map between unital $C^*$-algebras and to replace the functions $x^{\alpha}$ and $x^{1-\alpha}$ by functions $f$ and $g$ s
Externí odkaz:
http://arxiv.org/abs/1905.02014
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dadkhah, Ali, Moslehian, Mox Sal
Publikováno v:
Linear Multilinear Algebra 68 (2020), no. 8, 1501--1517
We present some properties of (not necessarily linear) positive maps between $C^*$-algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between $C^*$-algebras. Then we give some basic properties and fundamental inequal
Externí odkaz:
http://arxiv.org/abs/1811.03128
Autor:
Dadkhah, Ali, Moslehian, Mohammad Sal
Publikováno v:
Linear Multilinear Algebra 65 (2017), no. 7, 1386-1401
Let $\mathcal{A}$ and $\mathcal{B}$ be two unital $C^*$-algebras and let for $C\in\mathcal{A},\ \Gamma_C=\{\gamma \in \mathbb{C} : \|C-\gamma I\|=\inf_{\alpha\in \mathbb{C}} \|C-\alpha I\|\}$. We prove that if $\Phi :\mathcal{A} \longrightarrow \math
Externí odkaz:
http://arxiv.org/abs/1610.03868
Publikováno v:
In Bioelectrochemistry August 2020 134
Publikováno v:
Agronomy Journal; May2024, Vol. 116 Issue 3, p1229-1236, 8p
Autor:
Gardezi, Maaz, Joshi, Bhavna, Rizzo, Donna M., Ryan, Mark, Prutzer, Edward, Brugler, Skye, Dadkhah, Ali
Publikováno v:
Agronomy Journal; May2024, Vol. 116 Issue 3, p1217-1228, 12p