Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Dabrowski-Tumanski P"'
Autor:
Powalski, Rafał, Klockiewicz, Bazyli, Jaśkowski, Maciej, Topolski, Bartosz, Dąbrowski-Tumański, Paweł, Wiśniewski, Maciej, Kuciński, Łukasz, Miłoś, Piotr, Plewczynski, Dariusz
Accelerating molecular docking -- the process of predicting how molecules bind to protein targets -- could boost small-molecule drug discovery and revolutionize medicine. Unfortunately, current molecular docking tools are too slow to screen potential
Externí odkaz:
http://arxiv.org/abs/2411.00004
Autor:
Barbensi, Agnese, Yerolemou, Naya, Vipond, Oliver, Mahler, Barbara I., Dabrowski-Tumanski, Pawel, Goundaroulis, Dimos
Understanding the biological function of knots in proteins and their folding process is an open and challenging question in biology. Recent studies classify the topology and geometry of knotted proteins by analysing the distribution of a protein's pl
Externí odkaz:
http://arxiv.org/abs/2104.10530
Autor:
Sacha, Mikołaj, Błaż, Mikołaj, Byrski, Piotr, Dąbrowski-Tumański, Paweł, Chromiński, Mikołaj, Loska, Rafał, Włodarczyk-Pruszyński, Paweł, Jastrzębski, Stanisław
The central challenge in automated synthesis planning is to be able to generate and predict outcomes of a diverse set of chemical reactions. In particular, in many cases, the most likely synthesis pathway cannot be applied due to additional constrain
Externí odkaz:
http://arxiv.org/abs/2006.15426
Apart from the knots formed by the main-chain, the proteins can form numerous topological structures, when included the covalent and ion-mediated interactions. In this work, we define the protein non-trivial $\theta$-curves and identify 7 different t
Externí odkaz:
http://arxiv.org/abs/1908.05919
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Molecules, Vol 28, Iss 22, p 7462 (2023)
AlphaFold is a groundbreaking deep learning tool for protein structure prediction. It achieved remarkable accuracy in modeling many 3D structures while taking as the user input only the known amino acid sequence of proteins in question. Intriguingly
Externí odkaz:
https://doaj.org/article/696e35bbf1f54cb3b27c506a443ea47c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Agnese Barbensi, Naya Yerolemou, Oliver Vipond, Barbara I. Mahler, Pawel Dabrowski-Tumanski, Dimos Goundaroulis
Publikováno v:
Symmetry, Vol 13, Iss 9, p 1670 (2021)
Understanding how knotted proteins fold is a challenging problem in biology. Researchers have proposed several models for their folding pathways, based on theory, simulations and experiments. The geometry of proteins with the same knot type can vary
Externí odkaz:
https://doaj.org/article/9e3dd10b91bf423ea7e59de60c4d9f06
Publikováno v:
PLoS Computational Biology, Vol 14, Iss 3, p e1005970 (2018)
The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in
Externí odkaz:
https://doaj.org/article/4ec51659141f42f0ade890c2cfb4b0c2
Publikováno v:
TASK Quarterly, Vol 20, Iss 4 (2016)
The folding of knotted proteins remains a mystery both for theoreticians and experimentalists. Despite the development of new models, the driving force for self-tying remains elusive and the principle of minimal frustration cannot be reproduced in si
Externí odkaz:
https://doaj.org/article/7b8713cf29124981ab4cfa91170a896b