Zobrazeno 1 - 10
of 97
pro vyhledávání: '"Da-Bin WANG"'
Publikováno v:
AIMS Mathematics, Vol 7, Iss 5, Pp 8879-8890 (2022)
We deal with sign-changing solutions for the Kirchhoff equation $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ u = 0, \; \ x\in \partial\Omega, \end{cases} $ where $ a, b > 0 $ and $ \
Externí odkaz:
https://doaj.org/article/bf2701910135431d88457e45365081e8
Autor:
Jin-Long Zhang, Da-Bin Wang
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-17 (2020)
Abstract This paper deals with the following Kirchhoff–Schrödinger–Poisson system: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + ϕ u = K ( x ) f ( u ) in R 3 , − Δ ϕ = u 2 in R 3 , $$ \textstyle\begin{cases} -(a+b\int _{\mathbb
Externí odkaz:
https://doaj.org/article/c7862670fcdc4b6091d76e328538c79a
Autor:
Jin-Long Zhang, Da-Bin Wang
Publikováno v:
AIMS Mathematics, Vol 5, Iss 5, Pp 4494-4511 (2020)
This paper deals with following Kirchhoff-type system with critical growth \[\begin{cases} -(a+ b\int _{\mathbb{R}^3}|\nabla u|^{2}dx)\Delta u+ V(x)u+\phi|u|^{p-2}u =|u|^{4}u+\mu f(u), ~\ x\in\mathbb{R}^3,\\ (-\Delta)^{\alpha/2}\phi=l|u|^p, ~\ x\in \
Externí odkaz:
https://doaj.org/article/672f486046204d8bb69fe905b6103c8e
Publikováno v:
AIMS Mathematics, Vol 5, Iss 4, Pp 3634-3645 (2020)
In this paper, we consider the following sublinear biharmonic equations\begin{equation*} \Delta^2 u + V\left( x \right)u =K(x)|u|^{p-1}u,\ x\in \mathbb{R}^N, \end{equation*}where $N\geq5,~0
Externí odkaz:
https://doaj.org/article/40eec093677446bc9d3093c8bb0f8b6a
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-12 (2020)
Abstract In this paper, we consider the following sublinear fractional Schrödinger equation: ( − Δ ) s u + V ( x ) u = K ( x ) | u | p − 1 u , x ∈ R N , $$ (-\Delta)^{s}u + V(x)u= K(x) \vert u \vert ^{p-1}u,\quad x\in \mathbb{R}^{N}, $$ where
Externí odkaz:
https://doaj.org/article/21950b90f7eb4c89ad479c488b770532
Publikováno v:
AIMS Mathematics, Vol 5, Iss 3, Pp 2100-2112 (2020)
"In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _
Externí odkaz:
https://doaj.org/article/f4040c9ae59f493bbe4b02c0ec645913
Publikováno v:
Boundary Value Problems, Vol 2019, Iss 1, Pp 1-20 (2019)
Abstract In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+ϕu=f(u),x∈R3,−Δϕ=u2,x∈R3, $$\textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta
Externí odkaz:
https://doaj.org/article/d89b6d1ba8dc41c28fbf41e30403197b
Publikováno v:
Boundary Value Problems, Vol 2019, Iss 1, Pp 1-18 (2019)
Abstract In this paper, we study the following nonlinear fractional Schrödinger–Poisson system 0.1 {(−Δ)su+V(x)u+ϕu=K(x)f(u),x∈R3,(−Δ)tϕ=u2,x∈R3. $$ \textstyle\begin{cases} (-\Delta )^{s}u+V(x)u+\phi u=K(x)f(u),&x\in \mathbb{R}^{3}, \\
Externí odkaz:
https://doaj.org/article/781d64aface0469ab8152375d442a379
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 97, Pp 1-18 (2018)
The purpose of this paper is to study the existence of ground state solution for the Schr\"{o}dinger–Poisson systems: \[\begin{cases} -\Delta u+V(x)u+K(x)\phi u=Q(x)|u|^{4}u+f(x,u),&x\in\mathbb{R}^{3},\\ -\Delta\phi=K(x)u^{2},&x\in\mathbb{R}^{3}, \
Externí odkaz:
https://doaj.org/article/6023bcdc16a24e2d8aabdd78bff9ae71
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 231,, Pp 1-13 (2017)
In this article, by using variational method, we study the existence of a positive ground state solution for the Schr\"odinger-Poisson system $$\displaylines{ -\Delta u+V(x)u+K(x)\phi u=f(x,u),\quad x\in\mathbb{R}^3,\cr -\Delta\phi=K(x)u^2,\quad
Externí odkaz:
https://doaj.org/article/bceeaea983b34cef8799678c53f1582f