Zobrazeno 1 - 10
of 418
pro vyhledávání: '"DUBICKAS, ARTŪRAS"'
Autor:
Dubickas, Artūras, Sha, Min
In this paper, for positive integers $H$ and $k \leq n$, we obtain some estimates on the cardinality of the set of monic integer polynomials of degree $n$ and height bounded by $H$ with exactly $k$ roots of maximal modulus. These include lower and up
Externí odkaz:
http://arxiv.org/abs/2409.08625
In this paper, we use some of our previous results to improve an upper bound of Bayer-Fluckiger, Borello and Jossen on the Euclidean minima of algebraic number fields. Our bound depends on the degree $n$ of the field, its signature, discriminant and
Externí odkaz:
http://arxiv.org/abs/2307.10880
Autor:
Dubickas, Artūras1 (AUTHOR) arturas.dubickas@mif.vu.lt
Publikováno v:
Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3731. 11p.
Autor:
Dubickas, Artūras
Publikováno v:
In Journal of Complexity October 2024 84
Autor:
Dubickas Artūras, Maciulevičius Lukas
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 413-448 (2024)
In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over Q{\mathbb{Q}} cannot be of degree 8. This completes the classification of so-called product-feasible triplets (a,b,c)∈N3\left(a,b,c)\in {{\mathbb{N}}}^{3} w
Externí odkaz:
https://doaj.org/article/c92bf409081548aeb2b6a9492a9a243f
Publikováno v:
Publ. Mat. 68 (2024), no. 1, 219--239
We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) m
Externí odkaz:
http://arxiv.org/abs/2201.06377
Autor:
Dubickas, Artūras, Jankauskas, Jonas
In this paper we consider linear relations with conjugates of a Salem number $\alpha$. We show that every such a relation arises from a linear relation between conjugates of the corresponding totally real algebraic integer $\alpha+1/\alpha$. It is al
Externí odkaz:
http://arxiv.org/abs/1905.04023
Autor:
Dubickas, Arturas, Pritsker, Igor
Weighted Fekete points are defined as those that maximize the weighted version of the Vandermonde determinant over a fixed set. They can also be viewed as the equilibrium distribution of the unit discrete charges in an external electrostatic field. W
Externí odkaz:
http://arxiv.org/abs/1902.08348
Autor:
Dubickas, Arturas, Pritsker, Igor
We consider polynomials of degree $d$ with only real roots and a fixed value of discriminant, and study the problem of minimizing the absolute value of polynomials at a fixed point off the real line. There are two explicit families of polynomials tha
Externí odkaz:
http://arxiv.org/abs/1901.07324