Zobrazeno 1 - 10
of 89
pro vyhledávání: '"DRAGOS GHIOCA"'
Autor:
Igor E. Shparlinski, Dragos Ghioca
Publikováno v:
Journal of Number Theory. 233:112-125
Let q be a power of the prime number p, let K = F q ( t ) , and let r ⩾ 2 be an integer. For points a , b ∈ K which are F q -linearly independent, we show that there exist positive constants N 0 and c 0 such that for each integer l ⩾ N 0 and fo
Publikováno v:
Journal of the London Mathematical Society. 105:2076-2103
Given an integer $g$ and also some given integers $m$ (sufficiently large) and $c_1,\dots, c_m$, we show that the number of all non-negative integers $n\le M$ with the property that there exist non-negative integers $k_1,\dots, k_m$ such that $$n^2=\
Autor:
SHAMIL ASGARLI, DRAGOS GHIOCA
We study plane curves over finite fields whose tangent lines at smooth $\mathbb{F}_q$-points together cover all the points of $\mathbb{P}^2(\mathbb{F}_q)$.
13 pages
13 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a62f9ba69da550aa500a4146649d6a53
http://arxiv.org/abs/2302.13420
http://arxiv.org/abs/2302.13420
Autor:
Sina Saleh, Dragos Ghioca
Publikováno v:
Canadian Mathematical Bulletin. 65:116-122
We provide a direct proof of the Medvedev–Scanlon’s conjecture from Medvedev and Scanlon (Ann. Math. Second Series 179(2014), 81–177) regarding Zariski dense orbits under the action of regular self-maps on split semiabelian varieties defined ov
Publikováno v:
Bulletin of the Australian Mathematical Society. 104:381-390
We prove a quantitative partial result in support of the dynamical Mordell–Lang conjecture (also known as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field K of characteristic p, a semiabelian vari
Publikováno v:
Transactions of the American Mathematical Society. 374:733-752
Let $K$ be the function field of a smooth, irreducible curve defined over $\overline{\mathbb{Q}}$. Let $f\in K[x]$ be of the form $f(x)=x^q+c$ where $q = p^{r}, r \ge 1,$ is a power of the prime number $p$, and let $\beta\in \overline{K}$. For all $n
Autor:
Simone Coccia, Dragos Ghioca
Publikováno v:
Journal of Number Theory. 216:142-156
We complete the proof of a Siegel type statement for finitely generated $\Phi$-submodules of $\mathbb{G}_a$ under the action of a Drinfeld module $\Phi$.
Comment: 14 pages. arXiv admin note: text overlap with arXiv:0704.1331
Comment: 14 pages. arXiv admin note: text overlap with arXiv:0704.1331
Autor:
Dac-Nhan-Tam Nguyen, Dragos Ghioca
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:418-427
We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the firs
Autor:
Thomas J. Tucker, Dragos Ghioca
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:154-161
We advance a new conjecture in the spirit of the dynamical Manin–Mumford conjecture. We show that our conjecture holds for all polarisable endomorphisms of abelian varieties and for all polarisable endomorphisms of $(\mathbb{P}^{1})^{N}$. Furthermo
Autor:
Shamil Asgarli, Dragos Ghioca
We study pencils of hypersurfaces over finite fields $\mathbb{F}_q$ such that each of the $q+1$ members defined over $\mathbb{F}_q$ is smooth.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2dc75a1656a617dfed39bf983c999e74