Zobrazeno 1 - 10
of 195
pro vyhledávání: '"DONALD, ANDREW"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Using a Tanaka representation of the local time for a class of superprocesses with dependent spatial motion, as well as sharp estimates from the theory of uniformly parabolic partial differential equations, the joint H\"older continuity in time and
Externí odkaz:
http://arxiv.org/abs/1910.03049
Publikováno v:
New York J. Math. 25 (2019), 518-540
Let $D$ be a diagram of an alternating knot with unknotting number one. The branched double cover of $S^3$ branched over $D$ is an L-space obtained by half integral surgery on a knot $K_D$. We denote the set of all such knots $K_D$ by $\mathcal D$. W
Externí odkaz:
http://arxiv.org/abs/1610.00401
Autor:
Donald, Andrew
The double branched cover is a construction which provides a link between problems in knot theory and other questions in low-dimensional topology. Given a knot in a 3-manifold, the double branched cover gives a natural way of associating a 3-manifold
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573873
Autor:
Donald, Andrew, Vafaee, Faramarz
Publikováno v:
Proc. of the American Mathematical Society 144 (2016) no. 12 5397-5405
From Furuta's $\frac{10}{8}$ theorem, we derive a smooth slicing obstruction for knots in $S^3$ using a spin $4$-manifold whose boundary is $0$-surgery on a knot. We show that this obstruction is able to detect torsion elements in the smooth concorda
Externí odkaz:
http://arxiv.org/abs/1508.07047
Autor:
Letterie, Gerard, Mac Donald, Andrew
Publikováno v:
In Fertility and Sterility November 2020 114(5):1026-1031
Autor:
Donald, Andrew
Using an obstruction based on Donaldson's theorem on the intersection forms of definite 4-manifolds, we determine which connected sums of lens spaces smoothly embed in S^4. We also find constraints on the Seifert invariants of Seifert 3-manifolds whi
Externí odkaz:
http://arxiv.org/abs/1203.6008
Autor:
Donald, Andrew, Owens, Brendan
Publikováno v:
Algebr. Geom. Topol. 12 (2012) 2069-2093
We define a notion of concordance based on Euler characteristic, and show that it gives rise to a concordance group of links in the three-sphere, which has the concordance group of knots as a direct summand with infinitely generated complement. We co
Externí odkaz:
http://arxiv.org/abs/1203.3238