Zobrazeno 1 - 10
of 41
pro vyhledávání: '"DNA Repair - genetics"'
Autor:
Simon Grund Sørensen, Amruta Shrikhande, Gustav Alexander Poulsgaard, Mikkel Hovden Christensen, Johanna Bertl, Britt Elmedal Laursen, Eva R Hoffmann, Jakob Skou Pedersen
Publikováno v:
Sørensen, S G, Shrikhande, A, Poulsgaard, G A, Christensen, M H, Bertl, J, Laursen, B E, Hoffmann, E R & Pedersen, J S 2023, ' Pan-cancer association of DNA repair deficiencies with whole-genome mutational patterns ', eLife, vol. 12 . https://doi.org/10.7554/eLife.81224
Sørensen, S G, Shrikhande, A, Poulsgaard, G A, Christensen, M H, Bertl, J, Laursen, B E, Hoffmann, E R & Pedersen, J S 2023, ' Pan-cancer association of DNA repair deficiencies with whole-genome mutational patterns ', eLife, vol. 12, e81224 . https://doi.org/10.7554/elife.81224
Sørensen, S G, Shrikhande, A, Poulsgaard, G A, Christensen, M H, Bertl, J, Laursen, B E, Hoffmann, E R & Pedersen, J S 2023, ' Pan-cancer association of DNA repair deficiencies with whole-genome mutational patterns ', eLife, vol. 12, e81224 . https://doi.org/10.7554/elife.81224
DNA repair deficiencies in cancers may result in characteristic mutational patterns, as exemplified by deficiency of BRCA1/2 and efficacy prediction for PARP inhibitors. We trained and evaluated predictive models for loss-of-function (LOF) of 145 ind
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd8fdd0c0855124ac5e59edd15de56b8
https://pure.au.dk/portal/da/publications/pancancer-association-of-dna-repair-deficiencies-with-wholegenome-mutational-patterns(6d841269-ef5f-41e2-a050-6f671e6994dd).html
https://pure.au.dk/portal/da/publications/pancancer-association-of-dna-repair-deficiencies-with-wholegenome-mutational-patterns(6d841269-ef5f-41e2-a050-6f671e6994dd).html
Autor:
Antonio Rodriguez-Calero, John Gallon, Dilara Akhoundova, Sina Maletti, Alison Ferguson, Joanna Cyrta, Ursula Amstutz, Andrea Garofoli, Viola Paradiso, Scott A. Tomlins, Ekkehard Hewer, Vera Genitsch, Achim Fleischmann, Erik Vassella, Elisabeth J. Rushing, Rainer Grobholz, Ingeborg Fischer, Wolfram Jochum, Gieri Cathomas, Adeboye O. Osunkoya, Lukas Bubendorf, Holger Moch, George Thalmann, Charlotte K. Y. Ng, Silke Gillessen, Salvatore Piscuoglio, Mark A. Rubin
Publikováno v:
Nature communications, vol. 13, no. 1, pp. 2400
Rodriguez-Calero, Antonio; Gallon, John; Akhoundova, Dilara; Maletti, Sina; Ferguson, Alison; Cyrta, Joanna; Amstutz, Ursula; Garofoli, Andrea; Paradiso, Viola; Tomlins, Scott A; Hewer, Ekkehard; Genitsch, Vera; Fleischmann, Achim; Vassella, Erik; Rushing, Elisabeth J; Grobholz, Rainer; Fischer, Ingeborg; Jochum, Wolfram; Cathomas, Gieri; Osunkoya, Adeboye O; ... (2022). Alterations in homologous recombination repair genes in prostate cancer brain metastases. Nature Communications, 13(1), p. 2400. Springer Nature 10.1038/s41467-022-30003-5
Rodriguez-Calero, Antonio; Gallon, John; Akhoundova, Dilara; Maletti, Sina; Ferguson, Alison; Cyrta, Joanna; Amstutz, Ursula; Garofoli, Andrea; Paradiso, Viola; Tomlins, Scott A; Hewer, Ekkehard; Genitsch, Vera; Fleischmann, Achim; Vassella, Erik; Rushing, Elisabeth J; Grobholz, Rainer; Fischer, Ingeborg; Jochum, Wolfram; Cathomas, Gieri; Osunkoya, Adeboye O; ... (2022). Alterations in homologous recombination repair genes in prostate cancer brain metastases. Nature Communications, 13(1), p. 2400. Springer Nature 10.1038/s41467-022-30003-5
Improved survival rates for prostate cancer through more effective therapies have also led to an increase in the diagnosis of metastases to infrequent locations such as the brain. Here we investigate the repertoire of somatic genetic alterations pres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d339acb753118a030885e55b80a56cbb
https://www.zora.uzh.ch/id/eprint/222097/
https://www.zora.uzh.ch/id/eprint/222097/
Publikováno v:
The FEBS journal, vol. 289, no. 3, pp. 808-831
The human genome contains 11 APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) cytidine deaminases classified into four families. These proteins function mainly in innate antiviral immunity and can also restrict endogenous retrotransp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed082bf9274bb2db8cd80d43f41b48dc
https://serval.unil.ch/notice/serval:BIB_549304C0D4F3
https://serval.unil.ch/notice/serval:BIB_549304C0D4F3
Autor:
Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S.C., Gonzalez, S., Rosebrock, D., Mitchell, T.J., Rubanova, Y., Anur, P., Yu, K., Tarabichi, M., Deshwar, A.G., Wintersinger, J., Kleinheinz, K., Vázquez-García, I., Haase, K., Jerman, L., Sengupta, Subhajit, Macintyre, G., Malikic, S., Donmez, N., Livitz, D.G., Cmero, M., Demeulemeester, J., Schumacher, S., Fan, Y., Yao, X., Lee, J., Schlesner, M., Boutros, P.C., Bowtell, D.D., Zhu, H., Getz, G., Imielinski, M., Beroukhim, R., Sahinalp, S.C., Ji, Y., Peifer, M., Markowetz, F., Mustonen, V., Yuan, K., Wang, W., Morris, Q.D., Adams, D.J., Campbell, P.J., Cao, S., Christie, E.L., Cun, Y., Dawson, K.J., Drews, R.M., Eils, R., Fittall, M., Garsed, D.W., Ha, G., Lee-Six, H., Martincorena, I., Oesper, L., Peto, M., Raphael, B.J., Salcedo, A., Sengupta, S., Shi, R., Shin, S.J., Spiro, O., Stein, L.D., Vembu, S., Wheeler, D.A., Yang, T.-P., Spellman, P.T., Wedge, D.C., Van Loo, P.
Publikováno v:
Nature, vol 578, iss 7793
Nature, 578, 122-128
Nature
Nature, 578, 7793, pp. 122-128
Gerstung, M, Jolly, C, Leshchiner, I, Dentro, S C, Gonzalez, S, Rosebrock, D, Mitchell, T J, Rubanova, Y, Anur, P, Yu, K, Tarabichi, M, Deshwar, A G, Wintersinger, J, Kleinheinz, K, Vázquez-García, I, Haase, K, Jerman, L, Sengupta, S, Macintyre, G, Malikic, S, Donmez, N, Livitz, D G, Cmero, M, Demeulemeester, J, Schumacher, S, Fan, Y, Yao, X, Lee, J, Schlesner, M, Boutros, P C, Bowtell, D D, Zhu, H, Getz, G, Imielinski, M, Beroukhim, R, Sahinalp, S C, Ji, Y, Peifer, M, Markowetz, F, Mustonen, V, Yuan, K, Wang, W, Morris, Q D, Dentro, S C, Leshchiner, I, Gerstung, M, Jolly, C, Haase, K, Tarabichi, M, Wintersinger, J, Deshwar, A G, Yu, K, Gonzalez, S, Rubanova, Y, Macintyre, G, Adams, D J, Anur, P, Beroukhim, R, Boutros, P C, Bowtell, D D, Campbell, P J, Cao, S, Christie, E L, Cmero, M, Cun, Y, Dawson, K J, Donmez, N, Drews, R M, Eils, R, Fan, Y, Fittall, M, Garsed, D W, Getz, G, Ha, G, Imielinski, M, Jerman, L, Ji, Y, Kleinheinz, K, Lee, J, Lee-Six, H, Livitz, D G, Malikic, S, Markowetz, F, Martincorena, I, Mitchell, T J, Mustonen, V, Oesper, L, Peifer, M, Peto, M, Raphael, B J, Rosebrock, D, Sahinalp, S C, Salcedo, A, Schlesner, M, Schumacher, S, Sengupta, S, Shi, R, Shin, S J, Spiro, O, Stein, L D, Vázquez-García, I, Vembu, S, Wheeler, D A, Yang, T-P, Yao, X, Yuan, K, Zhu, H, Wang, W, Morris, Q D, Spellman, P T, Wedge, D C, Van Loo, P, Spellman, P T & Wedge, D C 2020, ' The evolutionary history of 2,658 cancers ', Nature, vol. 578, no. 7793, pp. 122-128 . https://doi.org/10.1038/s41586-019-1907-7
Nature, 578, 122-128
Nature
Nature, 578, 7793, pp. 122-128
Gerstung, M, Jolly, C, Leshchiner, I, Dentro, S C, Gonzalez, S, Rosebrock, D, Mitchell, T J, Rubanova, Y, Anur, P, Yu, K, Tarabichi, M, Deshwar, A G, Wintersinger, J, Kleinheinz, K, Vázquez-García, I, Haase, K, Jerman, L, Sengupta, S, Macintyre, G, Malikic, S, Donmez, N, Livitz, D G, Cmero, M, Demeulemeester, J, Schumacher, S, Fan, Y, Yao, X, Lee, J, Schlesner, M, Boutros, P C, Bowtell, D D, Zhu, H, Getz, G, Imielinski, M, Beroukhim, R, Sahinalp, S C, Ji, Y, Peifer, M, Markowetz, F, Mustonen, V, Yuan, K, Wang, W, Morris, Q D, Dentro, S C, Leshchiner, I, Gerstung, M, Jolly, C, Haase, K, Tarabichi, M, Wintersinger, J, Deshwar, A G, Yu, K, Gonzalez, S, Rubanova, Y, Macintyre, G, Adams, D J, Anur, P, Beroukhim, R, Boutros, P C, Bowtell, D D, Campbell, P J, Cao, S, Christie, E L, Cmero, M, Cun, Y, Dawson, K J, Donmez, N, Drews, R M, Eils, R, Fan, Y, Fittall, M, Garsed, D W, Getz, G, Ha, G, Imielinski, M, Jerman, L, Ji, Y, Kleinheinz, K, Lee, J, Lee-Six, H, Livitz, D G, Malikic, S, Markowetz, F, Martincorena, I, Mitchell, T J, Mustonen, V, Oesper, L, Peifer, M, Peto, M, Raphael, B J, Rosebrock, D, Sahinalp, S C, Salcedo, A, Schlesner, M, Schumacher, S, Sengupta, S, Shi, R, Shin, S J, Spiro, O, Stein, L D, Vázquez-García, I, Vembu, S, Wheeler, D A, Yang, T-P, Yao, X, Yuan, K, Zhu, H, Wang, W, Morris, Q D, Spellman, P T, Wedge, D C, Van Loo, P, Spellman, P T & Wedge, D C 2020, ' The evolutionary history of 2,658 cancers ', Nature, vol. 578, no. 7793, pp. 122-128 . https://doi.org/10.1038/s41586-019-1907-7
Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here,
Autor:
Alena Opattova, Sabine A.S. Langie, Mirta Milic, Andrew Collins, Asgeir Brevik, Erdem Coskun, Maria Dusinska, Isabel Gaivão, Ela Kadioglu, Blanca Laffon, Ricard Marcos, Susana Pastor, Jana Slyskova, Bozena Smolkova, Zsófia Szilágyi, Vanessa Valdiglesias, Pavel Vodicka, Katarina Volkovova, Stefano Bonassi, Roger W.L. Godschalk
Publikováno v:
Mutation Research. Genetic Toxicology and Environmental Mutagenesis
Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 876-877:503447. Elsevier
Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 876-877:503447. Elsevier
Levels of DNA damage represent the dynamics between damage formation and removal. Therefore, to better interpret human biomonitoring studies with DNA damage endpoints, an individual's ability to recognize and properly remove DNA damage should be char
Autor:
Marnef, Aline, Legube, Gaëlle
Publikováno v:
Nature Cell Biology
Nature Cell Biology, 2021, 23 (4), pp.305-313. ⟨10.1038/s41556-021-00663-4⟩
Nature Cell Biology, 2021, 23 (4), pp.305-313. ⟨10.1038/s41556-021-00663-4⟩
International audience; R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3379::600c3cbdafca0981a335c4dbc466e917
https://ut3-toulouseinp.hal.science/hal-04125277
https://ut3-toulouseinp.hal.science/hal-04125277
Autor:
Lee Mulderrig, Juan I. Garaycoechea
Publikováno v:
PLoS Genetics
PLoS Genetics, 16(4). Public Library of Science
PLoS Genetics, Vol 16, Iss 4, p e1008555 (2020)
PLoS Genetics, 16(4). Public Library of Science
PLoS Genetics, Vol 16, Iss 4, p e1008555 (2020)
Loss of the XPF-ERCC1 endonuclease causes a dramatic phenotype that results in progeroid features associated with liver, kidney and bone marrow dysfunction. As this nuclease is involved in multiple DNA repair transactions, it is plausible that this s
Autor:
Ana Luiza Dorigan de Matos Furlanetto, Kim H. Hebelstrup, Beatriz Ferrando, Jesper F. Havelund, Ian M. Møller, Tinna Stevnsner, Ricardo Gredilla
Publikováno v:
Ferrando, B, de Matos Furlanetto, A L D, Gredilla, R, Havelund, J F, Hebelstrup, K H, Møller, I M & Stevnsner, T 2019, ' DNA repair in plant mitochondria-A complete base excision repair pathway in potato tuber mitochondria ', Physiologia Plantarum, vol. 166, no. 2, pp. 494-512 . https://doi.org/10.1111/ppl.12801
Ferrando, B, Furlanetto, A L D M, Gredilla, R, Havelund, J F, Hebelstrup, K H, Møller, I M & Stevnsner, T 2019, ' DNA repair in plant mitochondria - a complete base excision repair pathway in potato tuber mitochondria ', Physiologia Plantarum, vol. 166, no. 2, pp. 494-512 . https://doi.org/10.1111/ppl.12801
Ferrando, B, Furlanetto, A L D M, Gredilla, R, Havelund, J F, Hebelstrup, K H, Møller, I M & Stevnsner, T 2019, ' DNA repair in plant mitochondria - a complete base excision repair pathway in potato tuber mitochondria ', Physiologia Plantarum, vol. 166, no. 2, pp. 494-512 . https://doi.org/10.1111/ppl.12801
Mitochondria are one of the major sites of reactive oxygen species (ROS) production in the plant cell. ROS can damage DNA, and this damage is in many organisms mainly repaired by the base excision repair (BER) pathway. We know very little about DNA r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ac9f6048af023512b92f47ba8349682
https://findresearcher.sdu.dk:8443/ws/files/143374912/DNA_repair_in_plant_mitochondria_A_complete_base_excision_repair_pathway_in_potato_tuber_mitochondria.pdf
https://findresearcher.sdu.dk:8443/ws/files/143374912/DNA_repair_in_plant_mitochondria_A_complete_base_excision_repair_pathway_in_potato_tuber_mitochondria.pdf
Autor:
Ana L. D. M. Furlanetto, Beatriz Ferrando, Silvia Maria Suter Correia Cadena, Tinna Stevnsner, Ian M. Møller, Glaucia Regina Martinez
Publikováno v:
Furlanetto, A L D M, Cadena, S M S C, Martinez, G R, Ferrando, B, Stevnsner, T & Møller, I M 2019, ' Short-term high temperature treatment reduces viability and inhibits respiration and DNA repair enzymes in Araucaria angustifolia cells ', Physiologia Plantarum, vol. 166, no. 2, pp. 513-524 . https://doi.org/10.1111/ppl.12793
We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short-term high temperature treatment on cell viability, respiration and DNA rep
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e87ebb417287fdf32075cddccee6391
https://pure.au.dk/portal/da/publications/shortterm-high-temperature-treatment-reduces-viability-and-inhibits-respiration-and-dna-repair-enzymes-in-araucaria-angustifolia-cells(081e0100-10ac-40ab-9a96-aaa2ec3416b1).html
https://pure.au.dk/portal/da/publications/shortterm-high-temperature-treatment-reduces-viability-and-inhibits-respiration-and-dna-repair-enzymes-in-araucaria-angustifolia-cells(081e0100-10ac-40ab-9a96-aaa2ec3416b1).html
Autor:
Martijn P. Lolkema, Harmen J.G. van de Werken, Paul C. Boutros, Andries M. Bergman, Takafumi N. Yamaguchi, Yanyun Zhu, Lisanne F. van Dessel, Job van Riet, Niven Mehra, Wilbert Zwart, Julie Livingstone, Neeltje Steeghs, Stefan Sleijfer, Ronald de Wit, Michiel S. van der Heijden, Minke Smits, Edwin Cuppen, Paul Hamberg, Emile E. Voest, John W.M. Martens, Inge M. van Oort
Publikováno v:
Nature communications, 10(1):5251. Nature Publishing Group
Nature Communications, 10
Nature Communications, 10(1):5251. Nature Publishing Group
Nature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
Nature Communications, 10(1). Nature Publishing Group
Nature Communications
Nature communications, vol 10, iss 1
Nature Communications, 10:5251. Nature Publishing Group
Nature Communications, 10
Nature Communications, 10(1):5251. Nature Publishing Group
Nature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
Nature Communications, 10(1). Nature Publishing Group
Nature Communications
Nature communications, vol 10, iss 1
Nature Communications, 10:5251. Nature Publishing Group
Metastatic castration-resistant prostate cancer (mCRPC) has a highly complex genomic landscape. With the recent development of novel treatments, accurate stratification strategies are needed. Here we present the whole-genome sequencing (WGS) analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2882275e8ceb9ccb244ebae17d027bd1
https://pure.amc.nl/en/publications/the-genomic-landscape-of-metastatic-castrationresistant-prostate-cancers-reveals-multiple-distinct-genotypes-with-potential-clinical-impact(1c43a7d4-1537-4df6-99fc-d5fc23d2db5a).html
https://pure.amc.nl/en/publications/the-genomic-landscape-of-metastatic-castrationresistant-prostate-cancers-reveals-multiple-distinct-genotypes-with-potential-clinical-impact(1c43a7d4-1537-4df6-99fc-d5fc23d2db5a).html