Zobrazeno 1 - 10
of 41
pro vyhledávání: '"DI BLASIO, BIANCA"'
We show that irreducible strongly continuous representations of $\mathrm{SL}(2,\mathbb{R})$ on Hilbert spaces are admissible, modulo the recently proposed solution of the invariant subspace problem on Hilbert spaces.
Comment: 13 pages, slightly
Comment: 13 pages, slightly
Externí odkaz:
http://arxiv.org/abs/2406.12626
For a Gelfand pair $(G,K)$ with $G$ a Lie group of polynomial growth and $K$ a compact subgroup, the "Schwartz correspondence" states that the spherical transform maps the bi-$K$-invariant Schwartz space ${\mathcal S}(K\backslash G/K)$ isomorphically
Externí odkaz:
http://arxiv.org/abs/2402.10848
If $(G,K)$ is a Gelfand pair, with $G$ a Lie group of polynomial growth and $K$ a compact subgroup of $G$, the Gelfand spectrum $\Sigma$ of the bi-$K$-invariant algebra $L^1(K\backslash G/K)$ admits natural embeddings into ${\mathbb R}^n$ spaces as a
Externí odkaz:
http://arxiv.org/abs/2105.13045
Let $(G,K)$ be a Gelfand pair, with $G$ a Lie group of polynomial growth, and let $\Sigma\subset{\mathbb R}^\ell$ be a homeomorphic image of the Gelfand spectrum, obtained by choosing a generating system $D_1,\dots,D_\ell$ of $G$-invariant differenti
Externí odkaz:
http://arxiv.org/abs/2101.05378
Publikováno v:
In Journal of Functional Analysis 15 October 2023 285(8)
We estimate the norms of many matrix coefficients of irreducible uniformly bounded representations of SL(2, R) as completely bounded multipliers of the Fourier algebra. Our results suggest that the known inequality relating the uniformly bounded norm
Externí odkaz:
http://arxiv.org/abs/1707.08329
We compute the "norm" of irreducible uniformly bounded representations of SL2R. We show that the Kunze-Stein version of the uniformly bounded representations has minimal norm in the similarity class of uniformly bounded representations.
Externí odkaz:
http://arxiv.org/abs/1706.09312
We prove several Paley--Wiener-type theorems related to the spherical transform on the Gelfand pair $\big(H_n\rtimes U(n),U(n)\big)$, where $H_n$ is the $2n+1$-dimensional Heisenberg group. Adopting the standard realization of the Gelfand spectrum as
Externí odkaz:
http://arxiv.org/abs/1303.0997
Publikováno v:
In Journal of Functional Analysis 1 January 2019 276(1):127-147
Autor:
Astengo, Francesca, Di Blasio, Bianca
Let $\Delta$ be the Jacobi Laplacian. We study the chaotic and hypercyclic behaviour of the strongly continuous semigroups of operators generated by perturbations of $\Delta$ with a multiple of the identity on $L^p$ spaces.
Externí odkaz:
http://arxiv.org/abs/1104.4479